终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    新高考数学一轮复习讲练测专题4.3应用导数研究函数的极值、最值(讲)(含解析)

    立即下载
    加入资料篮
    新高考数学一轮复习讲练测专题4.3应用导数研究函数的极值、最值(讲)(含解析)第1页
    新高考数学一轮复习讲练测专题4.3应用导数研究函数的极值、最值(讲)(含解析)第2页
    新高考数学一轮复习讲练测专题4.3应用导数研究函数的极值、最值(讲)(含解析)第3页
    还剩21页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习讲练测专题4.3应用导数研究函数的极值、最值(讲)(含解析)

    展开

    这是一份新高考数学一轮复习讲练测专题4.3应用导数研究函数的极值、最值(讲)(含解析),共24页。
    专题4.3 应用导数研究函数的极值、最值
    新课程考试要求
    了解函数极值的概念及函数在某点取到极值的条件,会用导数求函数的极大值、极小值,会求闭区间上函数的最大值、最小值,会用导数解决某些实际问题.
    核心素养
    本节涉及所有的数学核心素养:逻辑推理(多例)、数学建模、直观想象(例2)、数学运算(多例)、数据分析等.
    考向预测
    (1)以研究函数的单调性、单调区间等问题为主,根据函数的单调性确定参数的值或范围,与不等式、函数与方程、函数的图象相结合;
    (2)单独考查利用导数研究函数的某一性质以小题呈现;大题常与不等式、方程等结合考查,综合性较强.其中研究函数的极值、最值,都绕不开研究函数的单调性.
    (3)以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象等相结合,且有综合化更强的趋势.
    (4)单独考查利用导数研究函数的某一性质以小题呈现,综合研究函数的性质以大题呈现;
    (5)适度关注生活中的优化问题.
    【知识清单】
    1.函数的极值
    (1)函数的极小值:
    函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
    (2)函数的极大值:
    函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.
    极小值点,极大值点统称为极值点,极大值和极小值统称为极值.
    2.函数的最值
    (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.
    (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.
    【考点分类剖析】
    考点一 :函数极值的辨析
    【典例1】(2021·河北沧州市·高三三模)已知函数,则( )
    A.的单调递减区间为 B.的极小值点为1
    C.的极大值为 D.的最小值为
    【答案】C
    【解析】
    先对函数求导,令,再利用导数判断其单调性,而,从而可求出的单调区间和极值
    【详解】
    .令,则,
    所以在上单调递减.因为,
    所以当时,;当时,.
    所以的单调递增区间为,单调递减区间为,
    故的极大值点为1,的极大值为
    故选:C
    【典例2】(2020·江苏高二期末)已知函数的导函数的图象如图所示,下列结论中正确的是( )

    A.是函数的极小值点
    B.是函数的极小值点
    C.函数在区间上单调递增
    D.函数在处切线的斜率小于零
    【答案】BC
    【解析】
    由图象得时,,时,,
    故在单调递减,在单调递增,
    故是函数的极小值点,
    故选:BC.
    【总结提升】
    1.函数极值的辨析问题,特别是有关给出图象研究函数性质的题目,要分清给的是f(x)的图象还是f ′(x)的图象,若给的是f(x)的图象,应先找出f(x)的单调区间及极(最)值点,如果给的是f ′(x)的图象,应先找出f ′(x)的正负区间及由正变负还是由负变正,然后结合题目特点分析求解.
    2.f(x)在x=x0处有极值时,一定有f ′(x0)=0,f(x0)可能为极大值,也可能为极小值,应检验f(x)在x=x0两侧的符号后才可下结论;若f ′(x0)=0,则f(x)未必在x=x0处取得极值,只有确认x1x>ln2;
    ()

    相关试卷

    专题4.3 应用导数研究函数的极值、最值(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用):

    这是一份专题4.3 应用导数研究函数的极值、最值(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题43应用导数研究函数的极值最值原卷版docx、专题43应用导数研究函数的极值最值解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。

    专题4.3 应用导数研究函数的极值、最值-2024年高考数学大一轮复习核心考点精讲精练(新高考专用):

    这是一份专题4.3 应用导数研究函数的极值、最值-2024年高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题43应用导数研究函数的极值最值原卷版docx、专题43应用导数研究函数的极值最值解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。

    新高考数学一轮复习讲练测专题4.3应用导数研究函数的极值、最值(练)(含解析):

    这是一份新高考数学一轮复习讲练测专题4.3应用导数研究函数的极值、最值(练)(含解析),共30页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map