搜索
    上传资料 赚现金
    英语朗读宝

    2023年九年级数学上册专题23.1 旋转【十大题型】(举一反三)(人教版)(原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题23.1 旋转【十大题型】(举一反三)(人教版)(原卷版).docx
    • 解析
      专题23.1 旋转【十大题型】(举一反三)(人教版)(解析版).docx
    专题23.1 旋转【十大题型】(举一反三)(人教版)(原卷版)第1页
    专题23.1 旋转【十大题型】(举一反三)(人教版)(原卷版)第2页
    专题23.1 旋转【十大题型】(举一反三)(人教版)(原卷版)第3页
    专题23.1 旋转【十大题型】(举一反三)(人教版)(解析版)第1页
    专题23.1 旋转【十大题型】(举一反三)(人教版)(解析版)第2页
    专题23.1 旋转【十大题型】(举一反三)(人教版)(解析版)第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年九年级数学上册专题23.1 旋转【十大题型】(举一反三)(人教版)(原卷版+解析版)

    展开

    这是一份2023年九年级数学上册专题23.1 旋转【十大题型】(举一反三)(人教版)(原卷版+解析版),文件包含专题231旋转十大题型举一反三人教版原卷版docx、专题231旋转十大题型举一反三人教版解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
    专题23.1 旋转【十大题型】【人教版】TOC \o "1-3" \h \u  HYPERLINK \l "_Toc2722" 【题型1 关于原点对称的点的坐标】  PAGEREF _Toc2722 \h 1 HYPERLINK \l "_Toc17883" 【题型2 利用旋转的性质求角度】  PAGEREF _Toc17883 \h 3 HYPERLINK \l "_Toc19159" 【题型3 利用旋转的性质求线段长度】  PAGEREF _Toc19159 \h 6 HYPERLINK \l "_Toc18330" 【题型4 旋转中的坐标与图形变换】  PAGEREF _Toc18330 \h 10 HYPERLINK \l "_Toc24347" 【题型5 作图-旋转变换】  PAGEREF _Toc24347 \h 14 HYPERLINK \l "_Toc7276" 【题型6 中心对称图形及旋转对称图形】  PAGEREF _Toc7276 \h 18 HYPERLINK \l "_Toc4463" 【题型7 旋转中的周期性问题】  PAGEREF _Toc4463 \h 20 HYPERLINK \l "_Toc16949" 【题型8 旋转中的多结论问题】  PAGEREF _Toc16949 \h 24 HYPERLINK \l "_Toc31848" 【题型9 旋转中的最值问题】  PAGEREF _Toc31848 \h 30 HYPERLINK \l "_Toc13422" 【题型10 旋转的综合】  PAGEREF _Toc13422 \h 34【知识点1 关于原点对称的点的坐标】 在平面直角坐标系中,如果两个点关于原点对称,它们的坐标符号相反,即点p(x,y)关于原点对称点为(-x,-y)。【题型1 关于原点对称的点的坐标】【例1】(2022春•平阴县期末)点A(﹣2,3)与点B(a,b)关于坐标原点对称,则a+b的值为 ﹣1 .【分析】根据两个点关于原点对称时,它们的坐标符号相反可直接得到答案.【解答】解:∵点A(﹣2,3)与点B(a,b)关于坐标原点对称,∴a=2,b=﹣3,∴a+b=﹣1,故答案为:﹣1.【变式1-1】(2022秋•雨花区期末)若点A(m,5)与点B(2,n)关于原点对称,则3m+2n的值为 ﹣16 .【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点A(m,5)与点B(2,n)关于原点对称,∴m=﹣2,n=﹣5,∴3m+2n=﹣6﹣10=﹣16.故答案为:﹣16.【变式1-2】(2022秋•常熟市期末)已知点P(2m﹣1,﹣m+3)关于原点的对称点在第三象限,则m的取值范围是 12<m<3 .【分析】根据关于原点对称点的性质可得P在第一象限,进而可得2m-1>0-m+3>0,再解不等式组即可.【解答】解:∵点P(2m﹣1,﹣m+3)关于原点的对称点在第三象限,∴点P(2m﹣1,﹣m+3)在第一象限,∴2m-1>0-m+3>0,解得:12<m<3,故答案为:12<m<3.【变式1-3】(2022春•永新县期末)已知点P(3+2a,2a+1)与点P′关于原点成中心对称,若点P′在第二象限,且a为整数,则关于x的分式方程2x-ax+1=3的解是 x=﹣2 .【分析】根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.【解答】解:∵P(3+2a,2a+1)与点P′关于原点成中心对称,若点P′在第二象限,且a为整数,∴3+2a>02a+1<0,解得:-32<a<-12,即a=﹣1,当a=﹣1时,所求方程化为2x+1x+1=3,解得:x=﹣2,经检验x=﹣2是分式方程的解,则方程的解为﹣2.故答案为x=﹣2【知识点2 旋转的定义】 在平面内,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角。我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。【知识点3 旋转的性质】 旋转的特征:(1)对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。理解以下几点:(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度。(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。(3)图形的大小与形状都没有发生改变,只改变了图形的位置。【题型2 利用旋转的性质求角度】【例2】(2022春•梅州校级期末)如图,点O是等边△ABC内一点,∠AOB=110°,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD,若OD=AD,则∠BOC的度数为 140° .【分析】设∠BOC=α,根据旋转前后图形不发生变化,易证△COD是等边△OCD,从而利用α分别表示出∠AOD与∠ADO,再根据等腰△AOD的性质求出α.【解答】解:设∠BOC=α,根据旋转的性质知,△BOC≌△ADC,则OC=DC,∠BOC=∠ADC=α.又∵△BOC绕点C按顺时针方向旋转60°得到△ADC,∴∠OCD=60°,∴△OCD是等边三角形,∴∠COD=∠CDO=60°,∵OD=AD,∴∠AOD=∠DAO.∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴2×(190°﹣α)+α﹣60°=180°,解得α=140°.故答案是:140°.【变式2-1】(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为(  )A.90° B.60° C.45° D.30°【分析】利用旋转不变性,三角形内角和定理和平角的意义解答即可.【解答】解:∵∠B=30°,∠C=90°,∴∠CAB=180°﹣∠B﹣∠C=60°,∵将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,∴∠C′AB′=∠CAB=60°.∵点B′恰好落在CA的延长线上,∴∠BAC′=180°﹣∠CAB﹣∠C′AB′=60°.故选:B.【变式2-2】(2022•天津一模)如图,在△ABC中,AB=AC,∠BAC=40°,点D在边AB上,将△ADC绕点A逆时针旋转40°,得到△AD'B,且D',D,C三点在同一条直线上,则∠ACD的大小为(  )A.20° B.30° C.40° D.45°【分析】由旋转的性质可得∠BAC=∠BAD'=40°,AD=AD',由等腰三角形的性质可得∠AD'D=70°,∠D'AC=80°,即可求∠ACD的度数.【解答】解:∵将△ADC绕点A逆时针旋转40°得到△AD′B,∴∠BAC=∠BAD'=40°,AD=AD'∴∠AD'D=12×(180°﹣40°)=70°,∠D'AC=∠BAC+∠BAD'=80°,∴∠ACD=180°﹣∠AD'D﹣∠D'AC=30°;故选:B.【变式2-3】(2022•城步县模拟)如图,P为等边三角形ABC内一点,∠APB:∠APC:∠CPB=5:6:7,则以PA,PB,PC为三边构成的三角形的三个内角从小到大的度数之比为(  )A.1:2:3 B.2:3:4 C.3:4:5 D.5:6:7【分析】将△APB绕A点逆时针旋转60°得△ADC,显然有△ADC≌△APB,连PD,则AD=AP,∠DAP=60°,得到△ADP是等边三角形,PD=AP,所以△DCP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠APC:∠CPB=5:6:7,得到∠APB=100°,∠BPC=140°,∠CPA=120°,这样可分别求出∠PDC=∠ADC﹣∠ADP=∠APB﹣∠ADP=100°﹣60°=40°,∠DPC=∠APC﹣∠APD=120°﹣60°=60°,∠PCD=180°﹣(40°+60°)=80°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△ADC,显然有△ADC≌△APB,连PD,∵AD=AP,∠DAP=60°,∴△ADP是等边三角形,∴PD=AP,∵DC=PB,∴△DCP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠APC:∠CPB=5:6:7,∴∠APB=100°,∠BPC=140°,∠CPA=120°,∴∠PDC=∠ADC﹣∠ADP=∠APB﹣∠ADP=100°﹣60°=40°,∠DPC=∠APC﹣∠APD=120°﹣60°=60°,∠PCD=180°﹣(40°+60°)=80°,∴以PA,PB,PC为三边构成的三角形的三个内角从小到大的度数之比为2:3:4.故选:B.【题型3 利用旋转的性质求线段长度】【例3】(2022春•仪征市期末)如图,边长为1的正方形ABCD绕点A逆时针旋转60°得到正方形AEFG,连接CF,则CF的长是(  )A.1 B.2 C.3 D.32-3【分析】连接AC、AF,证明△ACF为等边三角形,求得AC便可得出结果.【解答】解:连接AC、AF,由旋转性质得,AC=AF,∠CAF=60°,∴△ACF为等边三角形,∴AC=CF,∵AC=2AB=2,∴CF=2,故选:B.【变式3-1】(2022春•如皋市期末)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连接BB′,则B′B的长为(  )A.23 B.5 C.25 D.6【分析】根据旋转的性质并利用勾股定理进行求解即可.【解答】解:∵∠C=90°,AC=3,BC=4,∴根据勾股定理得:AB=AC2+BC2=32+42=5,由旋转的性质可知,AC=AC'=3,BC=B'C'=4,∴BC'=AB﹣AC'=5﹣3=2,∴BB'=B'C2+BC'2=42+22=25,故选:C.【变式3-2】(2022•东莞市校级一模)如图,△AOB中,∠AOB=90°,AO=4,BO=8,△AOB绕点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为(  )A.35 B.1255 C.955 D.1655【分析】由勾股定理求出AB,由旋转的性质可得AO=A′O,A′B′=AB,再求出OE,从而得到OE=A′O,过点O作OF⊥A′B′于F,由三角形的面积求出OF,由勾股定理列式求出EF,再由等腰三角形三线合一的性质可得A′E=2EF,然后由B′E=A′B′﹣A′E代入数据计算即可得解.【解答】解:∵∠AOB=90°,AO=4,BO=8,∴AB=AO2+BO2=42+82=45,∵△AOB绕顶点O逆时针旋转到△A′OB′处,∴AO=A′O=4,A′B′=AB=45,∵点E为BO的中点,∴OE=12BO=12×8=4,∴OE=A′O=4,过点O作OF⊥A′B′于F,如图,S△A′OB′=12×45•OF=12×4×8,解得:OF=855,在Rt△EOF中,EF=OE2-OF2=42-(855)2=455,∵OE=A′O,OF⊥A′B′,∴A′E=2EF=2×455=855,∴B′E=A′B′﹣A′E=45-855=1255.故选:B.【变式3-3】(2022春•和平区期末)如图,△ABC与△CDE都是等边三角形,连接AD,BE,CD=4,BC=2,若将△CDE绕点C顺时针旋转,当点A、C、E在同一条直线上时,线段BE的长为(  )A.23 B.27 C.3或7 D.23或27【分析】分两种情况:①当E在CA延长线上时,过A作AM⊥BE于M,根据△ABC与△CDE都是等边三角形,CD=4,BC=2,可得AE=AB,∠AEB=∠ABE=30°,在Rt△ABM中,可得BM=3,从而BE=2BM=23;②当E在AC的延长线上时,过B作BN⊥AC于N,在Rt△BCN中,CN=12BC=1,BN=3CN=3,在Rt△BNE中,BE=BN2+NE2=27.【解答】解:①当E在CA延长线上时,过A作AM⊥BE于M,如图:∵△ABC与△CDE都是等边三角形,CD=4,BC=2,∴AE=CE﹣AC=4﹣2=2,∠BAC=60°,∴AE=AB,∴∠AEB=∠ABE=30°,在Rt△ABM中,AM=12AB=1,BM=3AM=3,∴BE=2BM=23;②当E在AC的延长线上时,过B作BN⊥AC于N,如图:在Rt△BCN中,CN=12BC=1,BN=3CN=3,∴NE=CE+CN=4+1=5,在Rt△BNE中,BE=BN2+NE2=(3)2+52=27;综上所述,线段BE的长为23或27,故选:D.【题型4 旋转中的坐标与图形变换】【例4】(2022秋•黄石期末)如图,线段AB与线段CD关于点P对称,若点A(a,b)、B(5,1)、D(﹣3,﹣1),则点C的坐标为(  )A.(﹣a,﹣b) B.(﹣a+2,﹣b) C.(﹣a﹣1,﹣b+1) D.(﹣a+1,﹣b﹣1)【分析】运用中点坐标公式求答案.【解答】解:设C(m,n),∵线段AB与线段CD关于点P对称,点P为线段AC、BD的中点.∴a+m2=5-32,b+n2=1-12,∴m=2﹣a,n=﹣b,∴C(2﹣a,﹣b),故选:B.【变式4-1】(2022秋•本溪期末)如图,在△AOB中,OA=4,OB=6,AB=27,将△AOB绕原点O逆时针旋转90°,则旋转后点A的对应点A′的坐标是(  )A.(﹣4,2) B.(﹣23,4) C.(﹣23,2) D.(﹣2,23)【分析】如图,过点A作AH⊥OB于H,设OH=m,则BH=6﹣m,利用勾股定理构建方程求出m,可得结论.【解答】解:如图,过点A作AH⊥OB于H,设OH=m,则BH=6﹣m,∵AH2=OA2﹣OH2=AB2﹣BH2,∴42﹣m2=(27)2﹣(6﹣m)2,∴m=2,∴AH=42-22=23,∴A(2,23),∴将△AOB绕原点O逆时针旋转90°,则旋转后点A的对应点A′(﹣23,2),【变式4-2】(2022秋•西湖区期末)如图,在平面直角坐标系中,△MNP绕原点逆时针旋转90°得到△M1N1P1,若M(1,﹣2),则点M1的坐标为(  )A.(﹣2,﹣1) B.(1,2) C.(2,1) D.(﹣1,﹣2)【分析】如图,连接OM,OM1,过点M作MH⊥y轴于点H,过点M1作M1T⊥x轴于点T.利用全等三角形的性质解决问题即可.【解答】解:如图,连接OM,OM1,过点M作MH⊥y轴于点H,过点M1作M1T⊥x轴于点T.∵M(1,﹣2),∴MH=1,OH=2,∵∠MOM1=∠POT,∴∠MOH=∠M1OT,∵∠MHO=∠M1TO=90°,OM=OM1,∴△MHO≌△M1TO(AAS),∴MH=M1T=1,OH=OT=2,∴M1(2,1),故选:C.【变式4-3】(2022•新抚区模拟)如图,Rt△AOB的斜边AO在y轴上,OB=3,∠AOB=30°,直角顶点B在第二象限,将Rt△AOB绕原点O顺时针旋转120°后得到△A′OB',则A点的对应点A′的坐标是(  )A.(3,﹣1) B.(1,-3) C.(2,0) D.(3,0)【分析】如图,利用含30度的直角三角形三边的关系得到BC=1,再利用旋转的性质得到OB′=OB=3,B′A′=BA=1,∠A′B′O=∠ABO=90°,然后利用第四象限点的坐标特征写出点A′的坐标.【解答】解:如图,在Rt△OAB中,∵∠BOA=30°,∴AB=33OB=33×3=1,∵Rt△OCB绕原点顺时针旋转120°后得到△OA′B',∴OB′=OB=3,B′A′=BA=1,∠A′B′O=∠ABO=90°,∴点A′的坐标为(3,﹣1).故选:A.【知识点4 利用旋转性质作图】 旋转有两条重要性质:任意一对对应点与旋转中心所连线段的夹角等于旋转角;对应点到旋转中心的距离相等,它就是利用旋转的性质作图的关键。步骤可分为:①连:即连接图形中每一个关键点与旋转中心; ②转:即把直线按要求绕旋转中心转过一定角度(作旋转角)③截:即在角的另一边上截取关键点到旋转中心的距离,的到各点的对应点; ④接:即连接到所连接的各点。【知识点5 中心对称图形的定义】 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就就是它的对称中心。【知识点6 中心对称的性质】 有以下几点:(1)关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分;(2)关于中心对称的两个图形能够互相重合,就是全等形;(3)关于中心对称的两个图形,对应线段平行(或共线)且相等。【知识点7 作一个图形关于某点对称的图形】 要作出一个图形关于某一点的成中心对称的图形,关键就是作出该图形上关键点关于对称中心的对称点。最后将对称点按照原图形的形状连接起来,即可的出成中心对称图形。【题型5 作图-旋转变换】【例5】(2022春•化州市校级期中)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2.【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用旋转变换的性质分别作出A,B,C的对应点A2,B2,C2即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.【变式5-1】(2022春•洪雅县期末)如图,在所给网格图( 每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5个单位得△A1B1C1,画出平移后的△A1B1C1.(2)画出△ABC关于点B成中心对称的图形.(3)在直线l上找一点P,使△ABP的周长最小.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中心对称图形的性质得出对应点位置;(3)利用轴对称求最短路线的方法得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△DEF,即为所求;(3)如图所示:P点位置,使△ABP的周长最小.【变式5-2】(2022春•蒲城县期末)在如图所示的平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点坐标分别为A(1,1),B(3,0),C(2,3).(1)将△ABC向左平移4个单位长度得到△A1B1C1,点A、B、C的对应点分别为A1、B1、C1,请画出△A1B1C1,并写出点C1的坐标;(2)以原点O为旋转中心,将△ABC顺时针旋转90°得到△A2B2C2,点A、B、C的对应点分别为A2、B2、C2,请画出△A2B2C2.【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用旋转变换的性质分别作出A,B,C的对应点A2,B2,C2即可.【解答】解:(1)如图,△A1B1C1即为所求,点C1的坐标(﹣2,3);(2)如图,△A2B2C2即为所求.【变式5-3】(2022秋•利通区期末)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上.(1)画出△ABC绕B点顺时针旋转90°后的△A1B1C1;并写出A1、B1、C1的坐标;(2)画出△ABC关于原点O对称的△A2B2C2;并写出A2、B2、C2的坐标.【分析】(1)根据题意所述的旋转中心、旋转方向、旋转角度找到各点的对应点,顺次连接即可得出△A1B1C1,结合直角坐标系可得出各点的坐标.(2)找到各点关于原点对称的点,顺次连接可得到△A2B2C2,结合直角坐标系可得出各点的坐标.【解答】解:(1)所画图形如下:结合图形可得A1坐标为(3,﹣1);B1坐标为(1,0);C1坐标为(2,﹣2);(2)所画图形如下所示:结合图形可得A2坐标为(﹣2,﹣2);B2坐标为(﹣1,0);C2坐标为(﹣3,﹣1).【题型6 中心对称图形及旋转对称图形】【例6】(2022秋•单县校级月考)如图所示的图案中,是轴对称图形而不是中心对称图形的个数是 1 .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形是轴对称图形而不是中心对称图形,共1个.故答案为:1.【变式6-1】(2022秋•普陀区期末)在下列图形中:等腰三角形、等边三角形、正方形、正五边形、平行四边形,等腰梯形,其中有  4 个旋转对称图形.【分析】根据旋转对称图形的定义:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.解答即可.【解答】解:在等腰三角形、等边三角形、正方形、正五边形、平行四边形,等腰梯形只有等边三角形、正方形、正五边形、平行四边形是旋转对称图形.故答案为4;【变式6-2】(2022秋•孝义市期中)2022年2月4日﹣2月20日,北京冬奥会将隆重开幕,北京将成为世界上第一个既举办过夏季奥运会,又举办过冬季奥运会的城市.下面图片是在北京冬奥会会徽征集过程中,征集到的一幅图片,整个图片由“京字组成的雪花图案”、“beijing2022”、“奥运五环”三部分组成.对于图片中的“雪花图案”,至少旋转  60 °能与原雪花图案重合.【分析】“雪花图案”可以看成正六边形,根据正六边形的中心角为60°,即可解决问题.【解答】解:“雪花图案”可以看成正六边形,∵正六边形的中心角为60°,∴这个图案至少旋转60°能与原雪花图案重合.故答案为:60.【变式6-3】(2022春•景德镇期中)如图,由4个全等的正方形组成的L形图案,请按下列要求画图:(1)在图案①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图案②中添加1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图案③中改变1个正方形的位置,从而得到一个新图形,使它既成中心对称图形,又成轴对称图形.【分析】(1)根据轴对称图形的性质,先找出对称轴,再思考如何画图;(2)如一,也是先找一个中心,再根据中心对称的性质,思考如何画图;(3)根据中心对称和轴对称的性质画一个图形.注意此题有多种画法,答案不唯一.【解答】解:如图所示.(1)如图(1),图(2),图(3)所示;(2)如图(4)所示;(3)如图(5),图(6)所示.【题型7 旋转中的周期性问题】【例7】(2022春•高新区校级月考)如图,在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转30°得到点P1,延长OP1到P2,使得OP2=2OP1;再将点P2绕着原点O按逆时针方向旋转30°得到P3,延长OP3到P4,使得OP4=2OP3……如此继续下去,点P2023坐标为(  )A.(﹣21010,3•21010) B.(0,21011) C.(21010,3•21010) D.(3•21010,21010)【分析】根据每次旋转后线段的长度是原来的2倍求出OP2023,根据旋转角为30°求出每12次旋转,24个点为一个循环组依次循环,然后用2023除以24,再根据商和余数的情况确定出点P2023在第二象限与y轴正半轴夹角为30°,然后解答即可.【解答】解:∵点P0的坐标为(1,0),∴OP0=1,∴OP2=2OP1=2,OP3=OP2=2,OP4=2OP3=2×2=22,…,OP2022=21011,∵2022÷24=84余6,∴点P2023是第85循环组的第7个点,在第二象限,与y轴正半轴夹角为30°,∴点P2023的坐标为(-210112,210112⋅3),即(﹣21010,3⋅21010).故选:A.【变式7-1】(2022秋•中原区校级期末)将△OBA按如图方式放在平面直角坐标系中,其中∠OBA=90°,∠A=30°,顶点A的坐标为(1,3),将△OBA绕原点逆时针旋转,每次旋转60°,则第2023次旋转结束时,点A对应点的坐标为(  )A.(-1,3) B.(-3,1) C.(-33,1) D.(-1,33)【分析】6次一个循环,分别求出第一次到第六次的点A的坐标,利用规律解决问题即可.【解答】解:∵A(1,3),∠ABO=90°,∴OB=1,AB=3,∵∠A=30°,∴OA=2OB=2,∴第一次旋转后的坐标为(﹣1,3),第二次旋转后的坐标为(﹣2,0),第三次旋转后的坐标为(﹣1,-3),第四次旋转后的坐标为(1,-3),第五次旋转后的坐标为(2,0),第六次旋转后的坐标为(1,3),•••,6次一个循环,∵2023÷6=337•••1,∴第2023次旋转结束时,点A对应点的坐标为(﹣1,3),故选:A.【变式7-2】(2022•开封一模)如图,在平面直角坐标系中,将正方形OABC绕O点顺时针选择45°后,得到正方形OA1B1C1,以此方式,绕O点连续旋转2022次得到正方形OA2022B2022C2022,如果点C的坐标为(0,1),那么点B2022的坐标为(  )A.(0,-2) B.(-2,0) C.(﹣1,1) D.(﹣1,﹣1)【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,再由旋转可知:将正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O顺时针旋转45°,可得对应点B的坐标,然后发现规律是8次一循环,进而得出答案.【解答】解:∵点C的坐标为(0,1),∴OC=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OC=OA=1,∴B(1,1),连接OB,如图:由勾股定理得:OB=12+12=2,由旋转的性质得:OB=OB1=OB2=OB3=⋯=2,∵将正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O顺时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(2,0),B2(1,﹣1),B3(0,-2),B4(﹣1,﹣1),B5(-2,0),B6(﹣1,1),…,发现是8次一循环,则2022÷8=252…6,∴点B2022的坐标为(﹣1,1),故选:C.【变式7-3】(2022春•高州市期中)如图,矩形ABCD的顶点A,B分别在x轴、y轴上,OA=OB=2,AD=42,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点C的坐标为(  )A.(6,4) B.(﹣6,4) C.(4,﹣6) D.(﹣4,6)【分析】过点C作CE⊥y轴于点E,连接OC,根据已知条件求出点C的坐标,再根据旋转的性质求出前4次旋转后点C的坐标,发现规律,进而求出第2022次旋转结束时,点C的坐标.【解答】解:如图,过点C作CE⊥y轴于点E,连接OC,∵OA=OB=2,∴∠ABO=∠BAO=45°,∵∠ABC=90°,∴∠CBE=45°,∵BC=AD=42,∴CE=BE=4,∴OE=OB+BE=6,∴C(﹣4,6),∵矩形ABCD绕点O顺时针旋转,每次旋转90°,则第1次旋转结束时,点C的坐标为(6,4);则第2次旋转结束时,点C的坐标为(4,﹣6);则第3次旋转结束时,点C的坐标为(﹣6,﹣4);则第4次旋转结束时,点C的坐标为(﹣4,6);…发现规律:旋转4次一个循环,∴2022÷4=505•••2,则第2022次旋转结束时,点C的坐标为(4,﹣6).故选:C.【题型8 旋转中的多结论问题】【例8】(2022•益阳)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有(  )A.①②③ B.①②④ C.①③④ D.②③④【分析】根据旋转的性质可得,BC=B′C′∠C′AB′=∠CAB=20°,∠AB′C′=∠ABC=30°,再根据旋转角的度数为50°,通过推理证明对①②③④四个结论进行判断即可.【解答】解:①∵△ABC绕A点逆时针旋转50°得到△AB′C′,∴BC=B′C′.故①正确;②∵△ABC绕A点逆时针旋转50°,∴∠BAB′=50°.∵∠CAB=20°,∴∠B′AC=∠BAB′﹣∠CAB=30°.∵∠AB′C′=∠ABC=30°,∴∠AB′C′=∠B′AC.∴AC∥C′B′.故②正确;③在△BAB′中,AB=AB′,∠BAB′=50°,∴∠AB′B=∠ABB′=12(180°﹣50°)=65°.∴∠BB′C′=∠AB′B+∠AB′C′=65°+30°=95°.∴C′B′与BB′不垂直.故③不正确;④在△ACC′中,AC=AC′,∠CAC′=50°,∴∠ACC′=12(180°﹣50°)=65°.∴∠ABB′=∠ACC′.故④正确.∴①②④这三个结论正确.故选:B.【变式8-1】(2022春•邗江区期末)如图,在正方形ABCD中,AB=8,若点E在对角线AC上运动,将线段DE绕点D逆时针旋转90°得到线段DF,连接EF、CF.点P在CD上,且CP=3PD.给出以下几个结论①EF=2DE,②EF2=AE2+CE2,③线段PF的最小值是42,④△CFE的面积最大是16.其中正确的是(  )A.①②④ B.②③④ C.①②③ D.①③④【分析】①根据旋转的性质得△DEF为等腰直角三角形,进而得到EF与DE的数量关系,便可判定①的正误;②证明△ADE≌△CDF,得AE=CF,∠DAE=∠DCF=45°,再在直角△CEF中由勾股定理得EF2=CF2+CE2,进而得EF2=AE2+CE2,便可判断②的正误;③由∠DCF=45°恒成立,所以当PF⊥CF时,PF取最小值,求出此时的PF便可判断③的正误;④先求得AE+CE=AC=2AD=82,再根据((AE﹣CE)2≥0求得AE•CE≤32,求得AE•CE的最大值为32,进而求得△CFE的面积最大值,便可判断④的正误.【解答】解:①∵由旋转知,DE=DF,∠EDF=90°,∴EF=2DE,故①正确;②∵四边形ABCD是正方形,∴∠ADC=∠BCD=90°,AD=CD,∠DAC=∠ACD=45°,∴∠ADC=∠EDF,∴∠ADE=∠CDF,∴△ADE≌△CDF(SAS),∴AE=CF,∠DAE=∠DCF=45°,∴∠ECF=90°,∴EF2=CF2+CE2,∴EF2=AE2+CE2,故②正确;③∵CP=3PD.∴PC=34CD=6,当PF⊥CF时,PF取最小值,如图,∵∠DCF=45°,∴PF=CF=22CP=32,故③错误;④∵∠ECF=90°,∴S△CEF=12CE⋅CF=12CE⋅AE,∵AE+CE=AC=2AD=82,∴(AE﹣CE)2=(AE+CE)2﹣4AE•CE=128﹣4AE•CE≥0,∴AE•CE≤32,∴AE•CE的最大值为32,∴△CFE的面积最大是12×32=16,故④正确;故选:A.【变式8-2】(2022春•双牌县期末)一副三角板如图摆放,点F是45°角三角板ABC的斜边的中点,AC=4.当30°角三角板DEF的直角顶点绕着点F旋转时,直角边DF,EF分别与AC,BC相交于点M,N.在旋转过程中有以下结论:①MF=NF;②四边形CMFN有可能是正方形:③MN长度的最小值为2;④四边形CMFN的面积保持不变.其中正确结论的个数是(  )A.1 B.2 C.3 D.4【分析】利用两直角三角形的特殊角、性质及旋转的性质分别判断每一个结论,找到正确的即可.【解答】解:①连接CF,∵F为AB中点,AC=BC,∠ACB=90°,∴AF=BF=CF,CF⊥AB,∴∠AFM+∠CFM=90°.∵∠DFE=90°,∠CFM+∠CFN=90°,∴∠AFM=∠CFN.同理,∵∠A+∠MCF=90°,∠MCF+∠FCN=90°,∴∠A=∠FCN,在△AMF与△CNF中,∠AFM=∠CFNAF=CF∠A=∠FCN,∴△AMF≌△CNF(ASA),∴MF=NF.故①正确;②当MF⊥AC时,四边形MFNC是矩形,此时MA=MF=MC,根据邻边相等的矩形是正方形可知②正确;③连接MN,当M为AC的中点时,CM=CN,根据边长为4知CM=CN=2,此时MN最小,最小值为22,故③错误;④当M、N分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△AMF∴S四边形CDFE=S△AFC.故④正确;故选:C.【变式8-3】(2022春•德州期中)如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.给出如下四个结论:①∠OEF=45°;②正方形A1B1C1O绕点O旋转时,四边形OEBF的面积随EF的长度变化而变化;③△BEF周长的最小值为(1+2)OA;④AE2+CF2=2OB2.其中正确的结论有(  )A.①③ B.②③ C.①④ D.③④【分析】①由四边形ABCD和A1B1C1O是正方形可知,易证得△BOE≌△COF(ASA),则可得Rt△OEF为等腰直角三角形;②由(1)易证得S四边形OEBF=S△BOC=14S正方形ABCD,则可得出结论;③BE+BF=BF+CF=BC=2OA,而EF的最小值为12AC=OA,故可得结论③正确;④由AE=BF和EF2=BE2+BF2,即可得结论.【解答】解:①∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∠BOE=∠COFOB=OC∠OBE=∠OCF,∴△BOE≌△COF(ASA),∴OE=OF,BE=CF,∴∠OEF=45°,EF=2OE;故①正确;②由①得△BOE≌△COF∴S四边形OEBF=S△BOF+S△BOE=S△BOF+S△COF=S△BOC=14S正方形ABCD,故②错误;③由①可知BE+BF=BF+CF=BC=2OA,EF=2OE,△BEF周长=BE+BF+EF=2OA+2OE,∵OA为定值,则OE最小时△BEF周长的周长最小,∴当OE⊥AB时OE最小,△BEF周长的周长最小,此时OE=22OA,∴△BEF周长的周长最小值=2OA+2OE=2OA+2×22OA=(1+2)OA.故③正确,④∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,又∵2OB2=AB2=(AE+CF)2.∴AE2+CF2≠2OB2,故④错误.故选:A.【题型9 旋转中的最值问题】【例9】(2022•黄石)如图,等边△ABC中,AB=10,点E为高AD上的一动点,以BE为边作等边△BEF,连接DF,CF,则∠BCF= 30° ,FB+FD的最小值为  53 .【分析】首先证明△BAE≌△BCF(SAS),推出∠BAE=∠BCF=30°,作点D关于CF的对称点G,连接CG,DG,BG,BG交CF于点F′,连接DF′,此时BF′+DF′的值最小,最小值=线段BG的长.【解答】解:如图,∵△ABC是等边三角形,AD⊥CB,∴∠BAE=12∠BAC=30°,∵△BEF是等边三角形,∴∠EBF=∠ABC=60°,BE=BF,∴∠ABE=∠CBF,在△BAE和△BCF中,BA=BC∠ABE=∠CBFBE=BF,∴△BAE≌△BCF(SAS),∴∠BAE=∠BCF=30°,作点D关于CF的对称点G,连接CG,DG,BG,BG交CF于点F′,连接DF′,此时BF′+DF′的值最小,最小值=线段BG的长.∵∠DCF=∠FCG=30°,∴∠DCG=60°,∵CD=CG=5,∴△CDG是等边三角形,∴DB=DC=DG,∴∠CGB=90°,∴BG=BC2-CG2=102-52=53,∴BF+DF的最小值为53,故答案为:30°,53.【变式9-1】(2022春•大埔县期中)如图,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AC=AD=3,AB=AE=5.连接BD,CE,将△ADE绕点A旋转一周,在旋转的过程中当∠DBA最大时,S△ACE=(  )A.6 B.62 C.9 D.92【分析】作DG⊥AB于G,CH⊥AE,交EA的延长线于H,可知点D在以A为圆心,AD为半径的圆上运动,当AD⊥BD时,∠ABD最大,利用AAS证明△ADG≌△AHC,得CH=DG,可说明△ACE的面积=△ABD的面积,从而得出答案.【解答】解:作DG⊥AB于G,CH⊥AE,交EA的延长线于H,∵AD=3,∴点D在以A为圆心,AD为半径的圆上运动,∴当AD⊥BD时,∠ABD最大,由勾股定理得BD=4,∵∠DAH=∠CAB=90°,∴∠CAH=∠DAB,∵∠AGD=∠H,AC=CD,∴△ADG≌△AHC(AAS),∴CH=DG,∴△ACE的面积=12×AE×CH=12×AB×DG=△ABD的面积=12×AD×BD=12×3×4=6,【变式9-2】(2022春•龙岗区期末)如图,点E是等边三角形△ABC边AC的中点,点D是直线BC上一动点,连接ED,并绕点E逆时针旋转90°,得到线段EF,连接DF.若运动过程中AF的最小值为3+1,则AB的值为(  )A.2 B.43 C.23 D.4【分析】由“SAS”可证△BDE≌△NFE,可得∠N=∠CBE=30°,则点N在与AN成30°的直线上运动,当AF'⊥F'N时,AF'有最小值,即可求解.【解答】解:如图,连接BE,延长AC至N,使EN=BE,连接FN,∵△ABC是等边三角形,E是AC的中点,∴AE=EC,∠ABE=∠CBE=30°,BE⊥AC,∴∠BEN=∠DEF=90°,BE=3AE,∴∠BED=∠CEF,在△BDE和△NFE中,BE=EN∠BED=∠NEFDE=EF,∴△BDE≌△NFE(SAS),∴∠N=∠CBE=30°,∴点N在与AN成30°的直线上运动,∴当AF'⊥F'N时,AF'有最小值,∴AF'=12AN,∴3+1=12(AE+3AE),∴AE=2,∴AC=4,故选:D.【变式9-3】(2022春•南京期末)如图,在正方形ABCD中,AB=4,E为AB边上一点,点F在BC边上,且BF=1,将点E绕着点F顺时针旋转90°得到点G,连接DG,则DG的长的最小值为(  )A.2 B.22 C.3 D.10【分析】过点G作GH⊥BC,垂足为H,可得∠GHF=90°,根据正方形的性质可得AB=CD=4,∠B=90°,根据旋转的性质可得EF=FG,∠EFG=90°,然后利用同角的余角相等可得∠BEF=∠GFH,从而可证△EBF≌△FHG,进而可得BF=GH=1,最后可得点G在与BC平行且与BC的距离为1的直线上,从而可得当点G在CD边上时,DG的值最小,进行计算即可解答.【解答】解:过点G作GH⊥BC,垂足为H,∴∠GHF=90°,∵四边形ABCD是正方形,∴AB=CD=4,∠B=90°,∴∠B=∠GHF=90°,由旋转得:EF=FG,∠EFG=90°,∴∠EFB+∠GFH=90°,∵∠BEF+∠BFE=90°,∴∠BEF=∠GFH,∴△EBF≌△FHG(AAS),∴BF=GH=1,∴点G在与BC平行且与BC的距离为1的直线上,∴当点G在CD边上时,DG最小且DG=4﹣1=3,∴DG的最小值为3,故选:C.【题型10 旋转的综合】【例10】(2022春•长沙期末)如图,有一副直角三角板如图1放置(其中∠D=45°,∠C=30°),PA,PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)在图1中,∠DPC= 75° ;(2)①如图2,若三角板PBD保持不动,三角板PAC绕点P逆时针旋转,转速为10°/秒,转动一周三角板PAC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC∥DB成立;②如图3,在图1基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,当PC转到与PA重合时,两三角板都停止转动,在旋转过程中,当∠CPD=∠BPM时,求旋转的时间是多少?【分析】(1)根据平角的定义即可得到结论;(2)①如图1,根据平行线的性质得到∠CPN=∠DBP=90°,求得∠APN=30°,于是得到结论;如图2,根据平行线的性质得到∠CPB=∠DBP=90°,根据三角形的内角和得到∠CPA=60°,求得∠APM=30°,于是得到结论;②设旋转的时间为t秒,由题知,∠APN=3t°,∠BPM=2t°,根据周角的定义得到∠CPD=360°﹣∠BPD﹣∠BPN﹣∠APN﹣∠APC=360°﹣45°﹣(180°﹣2t°)﹣(3t°)﹣60°=75°﹣t°,列方程即可得到结论.【解答】解:(1)∵∠BPD=∠D=45°,∠APC=60°,∴∠DPC=180°﹣45°﹣60°=75°,故答案为:75°;(2)①如图1,此时,BD∥PC成立,∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠C=30°,∴∠CPA=60°,∴∠APN=30°,∵转速为10°/秒,∴旋转时间为3秒;如图2,PC∥BD,∵PC∥BD,∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠C=30°,∴∠CPA=60°,∴∠APM=30°,∵三角板PAC绕点P逆时针旋转D的角度为180°+30°=210°,∵转速为10°/秒,∴旋转时间为21秒,综上所述,当旋转时间为3或21秒时,PC∥DB成立;②设旋转的时间为t秒,由题知,∠APN=3t°,∠BPM=2t°,∴∠BPN=180°﹣∠BPM=180°﹣2t°,∴∠CPD=360°﹣∠BPD﹣∠BPN﹣∠APN﹣∠APC=360°﹣45°﹣(180°﹣2t°)﹣(3t°)﹣60°=75°﹣t°,当∠CPD=∠BPM,即2t°=75°﹣t°,解得:t=25,∴当∠CPD=∠BPM,求旋转的时间是25秒.【变式10-1】(2022春•南川区期末)如图,四边形ABCD是正方形,点E在AB的延长线上,连接EC,EC绕点E逆时针旋转90°得到EF,连接CF、AF,CF与对角线BD交于点G.(1)若BE=2,求AF的长度;(2)求证:AF+2BG=2AD.【分析】(1)由正方形的性质及旋转的额性质求得∠ABC=∠EBC=∠FEC=90°,AB=BC,EF=EC,再利用勾股定理可得AC2=2BC2,CE2=BE2+BC2,CF2=2BE2+2BC2,再证明∠FAC=90°,结合勾股定理可得AF2=2BE2,进而可求解AF的长;(2)通过证明四边形ADBH是平行四边形,可得AD=BH=BC=AB,可求AH=2AB=2CD,由相似三角形的性质可得HF=2BG,即可求解.【解答】(1)解:连接AC,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠EBC=90°,AC2=AB2+BC2=2BC2,∴CE2=BE2+BC2,∵EC绕点E逆时旋转90°得到EF,∴EF=EC,∠FEC=90°,∴∠EFC=∠ECF=45°,CF2=EF2+CE2=2CE2=2BE2+2BC2,∴∠EFC=∠EAC=45°,∴∠FAE=∠FCE=45°,∴∠FAC=90°,∴CF2=AF2+AC2=AF2+2BC2,∴AF2+2BC2=2BE2+2BC2,即AF2=2BE2,∵BE=2,∴AF2=2×22=8,解得AF=22;(2)证明:连接AC,延长AF,CB交于点H,∵FAE=∠ABD=45°,∴AF∥BD,又∵AD∥BC,∴四边形ADBH是平行四边形,∴AD=BH=BC=AB,∴AH=2AB=2CD,∵AH∥BG,∴CG=FG,∴BG是△CBF的中位线,∴HF=2BG,∵AH=AF+FH,∴2AD=AF+2BG,即AF+2BG=2AD.【变式10-2】(2022•平邑县一模)在正方形ABCD中,点E在射线BC上(不与点B、C重合),连接DB,DE,将DE绕点E逆时针旋转90°得到EF,连接BF.(1)如图1,点E在BC边上.①依题意补全图1;②若AB=6,EC=2,求BF的长;(2)如图2,点E在BC边的延长线上,用等式表示线段BD,BE,BF之间的数量关系.【分析】(1)①根据要求画出图形即可;②过点F作FH⊥CB,交CB的延长线于H.证明△DCE≌△EHF(AAS),推出EC=FH,DC=EH,推出CE=BH=FH,再利用勾股定理解决问题即可;(2)由②可得△DCE≌△EHF,推出EC=FH,DC=EH,推出CE=BH=FH,再利用等腰直角三角形的性质解决问题即可【解答】解(1)图形如图所示.过点F作FH⊥CB,交CB的延长线于H,∵四边形ABCD是正方形,∴CD=AB=6,∠C=90°,∵∠DEF=∠C=90°,∴∠DEC+∠FEH=90°,∠DEC+∠EDC=90°,∴∠FEH=∠EDC,在△DEC和△EFH中,∠H=∠C=90°∠FEH=∠EDCEF=DE,∴△DEC≌△EFH(AAS),∴EC=FH=2,CD=BC=EH=6,∴HB=EC=2,∴Rt△FHB中,BF=FH2+BH2=22+22=22.(2)结论:BF+BD=2BE.理由:过点F作FH⊥CB,交CB于H,∵四边形ABCD是正方形,∴CD=AB=6,∠DCE=90°,∵∠DEF=∠DCE=90°,∴∠DEC+∠FEH=90°,∠DEC+∠EDC=90°,∴∠FEH=∠EDC,在△DEC和△EFH中,∠FHE=∠DCE=90°∠FEH=∠EDCEF=DE,∴△DEC≌△EFH(AAS),∴EC=FH,CD=BC=EH,∴HB=EC=HF,∴△DCB和△BHF都是等腰直角三角形,∴BD=2BC=2HE,BF=2BH,∵HE+BH=BE,∴BF+BD=2BE.【变式10-3】(2022•泰安一模)如图,将矩形ABCD绕着点B逆时针旋转得到矩形GBEF,使点C恰好落到线段AD上的E点处,连接CE,连接CG交BE于点H.(1)求证:CE平分∠BED;(2)取BC的中点M,连接MH,求证:MH∥BG;(3)若BC=2AB=4,求CG的长.【分析】(1)根据旋转的性质得到CB=CE,求得∠BEC=∠BCE,根据平行线的性质得到∠BCE=∠DEC,可证得结论;(2)过点C作BE的垂线CN,根据角平分线的性质得到CN=BG,求得CG=BQ,根据全等三角形的性质得到CH=GH,根据三角形的中位线定理即可得到结论;(3)过点G作BC的垂线GR,解直角三角形即可得到结论.【解答】(1)证明:∵将矩形ABCD绕着点B逆时针旋转得到矩形GBEF,使点C恰好落到线段AD上的E点处,∴BE=BC,∴∠BEC=∠BCE,∵AD∥BC,∴∠BCE=∠DEC,∴∠BEC=∠DEC,∴CE平分∠BED;(2)证明:过点C作CN⊥BE于N,如图:∵CE平分∠BED,CD⊥DE,CN⊥BE,∴CD=CN,∴BG=AB=CD=CN,∵∠BHG=∠NHC,∠GBH=∠CNH=90°,BG=CN,∴△BHG≌△NHC(AAS),∴GH=CH,即点H是CG中点,∵点M是BC中点,∴MH是△BCG的中位线,∴MH∥BG;(3)解:过点C作CN⊥BE于N,过G作GR⊥BC于R,如图:∵BC=2AB=4,∴BG=AB=CD=CN=2,∴CN=12BC,∴∠NBC=30°,∵∠GBE=90°,∴∠GBR=60°,∴BR=12BG=1,GR=3BR=3,在Rt△GRC中,CG=GR2+CR2=(3)2+(1+4)2=27,∴CG的长为27.

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map