所属成套资源:2023年中考数学二轮复习解答题专题(全国通用)
2023学年二轮复习解答题专题十九:二次函数的应用——面积型问题
展开
这是一份2023学年二轮复习解答题专题十九:二次函数的应用——面积型问题,文件包含2023年二轮复习解答题专题十九二次函数的应用面积型问题原卷版docx、2023年二轮复习解答题专题十九二次函数的应用面积型问题解析版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
2023年二轮复习解答题专题十九:二次函数的应用——面积型问题方法点睛利用二次函数解决面积问题,一般是先根据实际问题列出二次函数的解析式,根据二次函数性质求最值,需要注意的是自变量的取值范围.典例分析例1:(2022无锡中考)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).
(1)若矩形养殖场的总面积为36,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?专题过关1.(2022威海中考)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.
2. (2022湘潭中考)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长)和长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度的水池且需保证总种植面积为,试分别确定、的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问应设计为多长?此时最大面积为多少?3. (2022赤峰中考)【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长,宽的长方形水池进行加长改造(如图①,改造后的水池仍为长方形,以下简称水池1),同时,再建造一个周长为的矩形水池(如图②,以下简称水池2).【建立模型】如果设水池的边加长长度为,加长后水池1的总面积为,则关于的函数解析式为:;设水池2的边的长为,面积为,则关于的函数解析式为:,上述两个函数在同一平面直角坐标系中的图像如图③.【问题解决】(1)若水池2的面积随长度的增加而减小,则长度的取值范围是_________(可省略单位),水池2面积的最大值是_________;(2)在图③字母标注的点中,表示两个水池面积相等的点是_________,此时的值是_________;(3)当水池1的面积大于水池2的面积时,的取值范围是_________;(4)在范围内,求两个水池面积差的最大值和此时的值;(5)假设水池的边的长度为,其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积关于的函数解析式为:.若水池3与水池2的面积相等时,有唯一值,求的值.4. (2022沈阳中考) 如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.
(1)若所围成矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?(2)矩形框架ABCD面积最大值为______平方厘米.
相关试卷
这是一份2023学年二轮复习解答题专题三十九:抛物线上最值问题的探究,文件包含2023学年二轮复习解答题专题三十九抛物线上最值问题的探究原卷版docx、2023学年二轮复习解答题专题三十九抛物线上最值问题的探究解析版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
这是一份2023学年二轮复习解答题专题二十五:抛物线上面积类综合问题,文件包含2023年二轮复习解答题专题二十五抛物线上面积类综合问题原卷版docx、2023年二轮复习解答题专题二十五抛物线上面积类综合问题解析版docx等2份试卷配套教学资源,其中试卷共141页, 欢迎下载使用。
这是一份2023学年二轮复习解答题专题十六:与圆有关的阴影面积计算,文件包含2023年二轮复习解答题专题十六与圆阴影面积计算原卷版docx、2023年二轮复习解答题专题十六与圆阴影面积计算解析版docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。