![2024年八年级数学下册专题18.3 菱形的性质与判定【八大题型】(举一反三)(人教版)(原卷版)第1页](http://img-preview.51jiaoxi.com/2/3/14869330/0-1696238158446/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年八年级数学下册专题18.3 菱形的性质与判定【八大题型】(举一反三)(人教版)(原卷版)第2页](http://img-preview.51jiaoxi.com/2/3/14869330/0-1696238158499/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年八年级数学下册专题18.3 菱形的性质与判定【八大题型】(举一反三)(人教版)(原卷版)第3页](http://img-preview.51jiaoxi.com/2/3/14869330/0-1696238158527/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年八年级数学下册专题18.3 菱形的性质与判定【八大题型】(举一反三)(人教版)(解析版)第1页](http://img-preview.51jiaoxi.com/2/3/14869330/1-1696238166982/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年八年级数学下册专题18.3 菱形的性质与判定【八大题型】(举一反三)(人教版)(解析版)第2页](http://img-preview.51jiaoxi.com/2/3/14869330/1-1696238167011/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年八年级数学下册专题18.3 菱形的性质与判定【八大题型】(举一反三)(人教版)(解析版)第3页](http://img-preview.51jiaoxi.com/2/3/14869330/1-1696238167029/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教版八年级数学下册【精品】试卷+详细解析
- 2024年八年级数学下册专题18.1 平行四边形的性质【八大题型】(举一反三)(人教版)(原卷版+解析卷) 试卷 1 次下载
- 2024年八年级数学下册专题18.2 平行四边形的判定【九大题型】(举一反三)(人教版)(原卷版+解析卷) 试卷 1 次下载
- 2024年八年级数学下册专题18.4 矩形的性质与判定【九大题型】(举一反三)(人教版)(原卷版+解析卷) 试卷 1 次下载
- 2024年八年级数学下册专题18.5 正方形的性质与判定【十大题型】(举一反三)(人教版)(原卷版+解析卷) 试卷 1 次下载
- 2024年八年级数学下册专题18.6 三角形的中位线【九大题型】(举一反三)(人教版)(原卷版+解析卷) 试卷 1 次下载
人教版八年级下册18.2.2 菱形课后复习题
展开这是一份人教版八年级下册18.2.2 菱形课后复习题,文件包含2024年八年级数学下册专题183菱形的性质与判定八大题型举一反三人教版原卷版docx、2024年八年级数学下册专题183菱形的性质与判定八大题型举一反三人教版解析版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
专题18.3 菱形的性质与判定【八大题型】
【人教版】
【题型1 由菱形的性质求线段的长度】
【题型2 由菱形的性质求角的度数】
【题型3 由菱形的性质求面积】
【题型4 由菱形的性质求点的坐标】
【题型5 菱形判定的条件】
【题型6 证明四边形是菱形】
【题型7 菱形中多结论问题】
【题型8 菱形的判定与性质综合】
【知识点1 菱形的定义】
有一组邻边相等的平行四边形叫做菱形.
【知识点2 菱形的性质】
①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
【题型1 由菱形的性质求线段的长度】
【例1】(2022•青县二模)如图,在菱形ABCD中,AB=BD=10,点F为AD的中点,FE⊥BD于E,则EF的长为( )
A. B. C. D.
【变式1-1】(2022春•北碚区校级期中)如图,菱形ABCD的对角线交于点O,过点A作AE⊥CD于点E,连接OE.若AB=3,OE,则DE的长度为( )
A. B. C. D.
【变式1-2】(2022春•江汉区期中)如图,菱形ABCD的对角线AC.BD相交于点O,过点D作DH⊥AB于点H,连接CH,若AB=2,AC=2,则CH的长是( )
A. B.3 C. D.4
【变式1-3】(2022春•沙坪坝区校级期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E、F分别是AB、AO的中点,连接EF、BF.若AF=1,AE,则FB的长为( )
A.3 B.2 C. D.3
【题型2 由菱形的性质求角的度数】
【例2】(2022春•延津县期中)如图,在菱形ABCD中,直线MN分别交AB、CD、AC于点M、N和O,且AM=CN,连接BO.若∠OBC=65°,则∠DAC为( )
A.65° B.30° C.25° D.20°
【变式2-1】(2022•道里区二模)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是( )
A.20° B.25° C.30° D.40°
【变式2-2】(2021秋•泰和县期末)如图,在菱形ABCD中,点E是CD上一点,连接AE交对角线BD于点F,连接CF,若∠AED=50°,则∠BCF= 度.
【变式2-3】(2022•玄武区二模)如图,菱形ABCD和正五边形AEFGH,F,G分别在BC,CD上,则∠1﹣∠2= °.
【题型3 由菱形的性质求面积】
【例3】(2022•焦作模拟)如图,在菱形ABCD中,点E,F分别是边BC,CD的中点,连接AE,AF,EE若菱形ABCD的面积为16,则△AEF的面积为( )
A.4 B.6 C.8 D.10
【变式3-1】(2022春•禹州市期中)如图,已知菱形ABCD的对角线AC、BD相交于点O,点E,P,F分别是线段OB,CD,OD的中点,连接EP,PF,若AC=8,PE=2,则菱形ABCD的面积为( )
A.64 B.48 C.24 D.16
【变式3-2】(2022•阿荣旗二模)两张菱形贺卡如图所示叠放,其中菱形ABCD的边长为6cm,∠BAD=60°,菱形A'B'C'D'可以看作是由菱形ABCD沿CA方向平移2cm得到,AD交C'D'于点E,则重叠部分的面积为( )cm2.
A.8 B.9 C.10 D.11
【变式3-3】(2022•蓝田县二模)如图,在菱形ABCD中,∠A=120°,点P为边AB上一点(点P不与端点重合),连接CP,点E、F分别为AP、CP的中点,连接EF,若EF=2,则菱形ABCD的面积为( )
A.8 B.8 C.9 D.9
【题型4 由菱形的性质求点的坐标】
【例4】(2022•东丽区一模)如图,四边形ABCD为菱形,A,B两点的坐标分别是(),(﹣1,),对角线相交于点O,则点C的坐标为( )
A.() B.() C.(1,) D.(﹣1,)
【变式4-1】(2022•太湖县校级一模)如图,在平面直角坐标系中、四边形OABC为菱形,O为原点,A点坐标为(8,0),∠AOC=60°,则对角线交点E的坐标为( )
A.(4,2) B.(2,4) C.(2,6) D.(6,2)
【变式4-2】(2022•西平县模拟)如图,在平面直角坐标系xOy中,菱形OABC的顶点B在x轴上,且OB=8cm,∠AOB=60°.点D从点O出发,沿O→A→B→C→O以2cm/s的速度做环绕运动,则第85秒时,点D的坐标为( )
A. B. C. D.
【变式4-3】(2022•巧家县二模)如图,菱形ABCD的四个顶点位于坐标轴上,对角线AC,BD交于原点O,线段AD的中点E的坐标为,P是菱形ABCD边上的点,若△PDE是等腰三角形,则点P的坐标可能是 .
【知识点3 菱形的判定】
①一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形.
③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
【题型5 菱形判定的条件】
【例5】(2022春•房山区期中)在四边形ABCD中,对角线AC,BD交于点O.现存在以下四个条件:
①AB∥CD; ②AO=OC;③AB=AD;④AC平分∠DAB.
从中选取三个条件,可以判定四边形ABCD为菱形.则可以选择的条件序号是 (写出所有可能的情况).
【变式5-1】(2022•海淀区二模)如图,在平行四边形ABCD中,过AC中点O的直线分别交边BC,AD于点E,F,连接AE,CF.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是 (写出一个即可).
【变式5-2】(2022春•无锡期中)如图,已知点E、F分别是四边形ABCD的边AD、BC的中点,G、H分别是对角线BD、AC的中点,要使四边形EGFH是菱形,则四边形ABCD需满足的条件是( )
A.AB=CD B.AC=BD C.AC⊥BD D.AD=BC
【变式5-3】(2022•上海模拟)如图,在Rt△ABC中,∠ACB=90°,平行四边形BCDE的顶点E在边AB上,联结CE、AD.添加一个条件,可以使四边形ADCE成为菱形的是( )
A.CE⊥AB B.CD⊥AD C.CD=CE D.AC=DE
【题型6 证明四边形是菱形】
【例6】(2022春•泗洪县期中)如图,点D、E、F分别是△ABC各边的中点,连接DE,EF,AE.
(1)求证:四边形ADEF为平行四边形;
(2)从下列条件①∠BAC=90°,②AE平分∠BAC,③AB=AC中选择一个添加到题干中,使得四边形ADEF为菱形.我选的是 (写序号),并证明.
【变式6-1】(2022•南京一模)如图,在▱ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.
(1)证明:四边形EHFG是平行四边形;
(2)当▱ABCD具备怎样的条件时,四边形EHFG是菱形?请直接写出条件,无需说明理由.
【变式6-2】(2022•盐城二模)如图,在平行四边形ABCD中,点O是BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)若∠A=50°,则当∠ADE= °时,四边形BECD是菱形.
【变式6-3】(2022•静安区二模)已知:如图,在四边形ABCD中,点E、F分别是边BC、DC的中点,AE、AF分别交BD于点M、N,且BM=MN=ND,联结CM、CN.
(1)求证:四边形AMCN是平行四边形;
(2)如果AE=AF,求证:四边形ABCD是菱形.
【题型7 菱形中多结论问题】
【例7】(2022春•番禺区校级期中)如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC,AD于点F、G,连接OG,则下列结论:( )
①;
②与△EGD全等的三角形共有2个;
③S四边形ODEG=S四边形ABOG;
④由点A、B、D、E构成的四边形是菱形;
A.①③④ B.①④ C.①②③ D.②③④
【变式7-1】(2022春•下城区校级月考)如图,平行四边形ABCD中,对角线AC,BD交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.下列结论正确的是( )
①EG=EF;
②△EFG≌△GBE;
③FB平分∠EFG;
④EA平分∠GEF;
⑤四边形BEFG是菱形.
A.③⑤ B.①②④ C.①②③④ D.①②③④⑤
【变式7-2】(2022•泰安一模)如图,在菱形ABCD中,AB=BD,E,F分别是AB,AD上的点(不与端点重合),且AE=DF,连接BF,DE相交于点G,连接CG与BD相交于点H.下列结论:①DE=BF;②∠BGE=60°;③CG⊥BD;④若AF=2DF,则BG=6GF.其中正确结论的序号是( )
A.①② B.①②④ C.②③④ D.①③④
【变式7-3】(2022•天桥区一模)如图,△ABC是边长为1的等边三角形,D,E为线段AC上两动点,且∠DBE=30°,过点D,E分别作AB,BC的平行线相交于点F,分别交BC,AB于点H,G.现有以下结论:①S△ABC;②当点D与点C重合时,FH;③AE+CDDE;④当AE=CD时,四边形BHFG为菱形.则其中正确的结论的序号是 .
【题型8 菱形的判定与性质综合】
【例8】(2022•巴彦县二模)如图,AB=BD,AC=CD,AD平分∠BAC,AD交BC于点O.
(1)如图1,求证:四边形ABDC是菱形;
(2)如图2,点E为BD边的中点,连接AE交BC于点F,若2∠FAO=∠ACD,在不添加任何辅助线和字母的条件下,请直接写出图2中所有面积是△ABF面积的整数倍的三角形.
【变式8-1】(2022•南岗区模拟)已知:BD是△ABC的角平分线,点E在AB边上,BE=BC,过点E作EF∥AC,交BD于点F,连接CF,DE.
(1)如图1,求证:四边形CDEF是菱形;
(2)如图2,当∠DEF=90°,AC=BC时,在不添加任何辅助线的情况下,请直接写出图2中度数为∠ABD的度数2倍的角.
【变式8-2】(2022春•东莞市期中)如图,在平行四边形ABCD中,CE平分∠BCD,交AB边于点E,EF∥BC,交CD于点F,点G是BC边的中点,连接GF,且∠1=∠2,CE与GF交于点M,过点M作MH⊥CD于点H.
(1)求证:四边形BCFE是菱形;
(2)若CH=1,求BC的长;
(3)求证:EM=FG+MH.
【变式8-3】(2022春•洪泽区期中)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.
(1)证明平行四边形ECFG是菱形;
(2)若∠ABC=120°,连接BG、CG、DG,如图2所示,
①求证:△DGC≌△BGE;
②求∠BDG的度数.
(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.
相关试卷
这是一份华师大版八年级下册第19章 矩形、菱形与正方形19.2 菱形1. 菱形的性质当堂检测题,共48页。
这是一份苏科版八年级数学下册举一反三专题特训专题9.5矩形的性质与判定【八大题型】(原卷版+解析),共48页。
这是一份苏科版八年级数学下册举一反三专题特训专题9.4菱形的性质与判定【八大题型】(原卷版+解析),共48页。