- 新教材2023_2024学年高中数学第2章函数3函数的单调性和最值第1课时函数的单调性分层作业课件北师大版必修第一册 课件 0 次下载
- 新教材2023_2024学年高中数学第2章函数3函数的单调性和最值第2课时函数的最值分层作业课件北师大版必修第一册 课件 0 次下载
- 新教材2023_2024学年高中数学第2章函数4函数的奇偶性与简单的幂函数4.2简单幂函数的图象和性质分层作业课件北师大版必修第一册 课件 0 次下载
- 新教材2023_2024学年高中数学第3章指数运算与指数函数1指数幂的拓展2指数幂的运算性质分层作业课件北师大版必修第一册 课件 0 次下载
- 新教材2023_2024学年高中数学第3章指数运算与指数函数3指数函数3.1指数函数的概念3.2指数函数的图象和性质第1课时指数函数的概念图象和性质分层作业课件北师大版必修第一册 课件 0 次下载
高中北师大版 (2019)第二章 函数4 函数的奇偶性与简单的幂函数4.1 函数的奇偶性作业ppt课件
展开1.(多选题)下列函数是奇函数的有( )
解析 先判断函数的定义域是否关于原点对称,再确定f(-x)与f(x)的关系.选项A中函数的定义域为(-∞,1)∪(1,+∞),不关于原点对称,所以排除A;选项B,D中函数定义域均为R,且f(-x)=-f(x),故为奇函数;选项C中函数定义域为(-∞,0)∪(0,+∞),且f(-x)=-f(x),也是奇函数.
2.若奇函数f(x)在区间[-2,-1]上单调递减,则函数f(x)在区间[1,2]上( )A.单调递增,且有最小值f(1)B.单调递增,且有最大值f(1)C.单调递减,且有最小值f(2)D.单调递减,且有最大值f(2)
解析 因为奇函数的图象关于原点对称,所以函数f(x)在y轴两侧单调性相同.因为f(x)在区间[-2,-1]上单调递减,所以f(x)在区间[1,2]上单调递减,所以f(x)在区间[1,2]上有最大值f(1),最小值f(2),故选C.
3.若函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的单调递减区间是 .
解析 因为函数f(x)是偶函数,所以k-1=0,即k=1,所以f(x)=-x2+3,其单调递减区间为[0,+∞).
4.定义在R上的偶函数f(x),对任意的x1,x2∈[0,+∞)(x1≠x2),有则f(3),f(-2),f(1)的大小关系为 .
f(3)
解析 当x<0时,-x>0.因为f(x)是奇函数,所以f(-x)=-f(x)=2(-x)2-7x-4=2x2-7x-4,所以f(x)=-2x2+7x+4.即g(x)=-2x2+7x+4,因此,f(g(-1))=f(-5)=-50-35+4=-81.
6.已知函数f(x)=x5+ax3+bx-8,且f(-2)=10,则f(2)= .
解析 令h(x)=x5+ax3+bx,易知h(x)为奇函数.因为f(x)=h(x)-8,h(x)=f(x)+8,所以h(-2)=f(-2)+8=18,所以h(2)=-h(-2)=-18,所以f(2)=h(2)-8=-18-8=-26.
7.已知f(x)为奇函数,且当x<0时,f(x)=x2+3x+2.若当x∈[1,3]时,f(x)的最大值为m,最小值为n,求m-n的值.
解 ∵当x<0时,f(x)=x2+3x+2,且f(x)是奇函数,∴当x>0时,-x<0,则f(-x)=x2-3x+2,故f(x)=-f(-x)=3x-x2-2.
8.设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数
解析 ∵f(x)是奇函数,g(x)是偶函数,∴f(-x)=-f(x),g(-x)=g(x).对于A,f(-x)g(-x)=-f(x)g(x),故f(x)g(x)是奇函数,故A错误;对于B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),故|f(x)|g(x)是偶函数,故B错误;对于C,f(-x)|g(-x)|=-f(x)|g(x)|,故f(x)|g(x)|是奇函数,故C正确;对于D,|f(-x)g(-x)|=|f(x)g(x)|,故|f(x)g(x)|是偶函数,故D错误.故选C.
9.若函数f(x)和g(x)都是奇函数,且F(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,则F(x)在区间(-∞,0)上( )A.有最小值-5B.有最大值-5C.有最小值-1D.有最大值-3
解析 ∵函数f(x)和g(x)都是奇函数,∴F(x)-2=af(x)+bg(x)为奇函数.又F(x)在区间(0,+∞)上有最大值5,∴F(x)-2在区间(0,+∞)上有最大值3,F(x)-2在区间(-∞,0)上有最小值-3,∴F(x)在区间(-∞,0)上有最小值-1.
10.已知定义在R上的函数f(x)在区间(-∞,-2)上单调递减,若g(x)=f(x-2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是( )A.(-∞,-4]∪[-2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-2]∪[2,+∞)D.(-∞,-4]∪[0,+∞)
解析 g(x)=f(x-2)的图象是将函数f(x)的图象向右平移2个单位长度得到的,又g(x)=f(x-2)的图象关于原点对称,所以函数f(x)的图象关于点(-2,0)对称,大致图象如图所示,且f(0)=g(2)=0,f(-4)=g(-2)=-g(2)=0,f(-2)=g(0)=0,结合函数的图象,
结合图象可知x≥0或-2≤x<0或x≤-4.故不等式xf(x)≤0的解集是(-∞,-4]∪[-2,+∞),故选A.
11.定义在区间(-8,a)上的奇函数f(x)在区间[2,7]上单调递增,在区间[3,6]上的最大值为a,最小值为-1,则2f(-6)+f(-3)= .
解析 根据题意,f(x)是定义在区间(-8,a)上的奇函数,则a=8.又由f(x)在区间[2,7]上单调递增,且在区间[3,6]上的最大值为a=8,最小值为-1,则f(6)=a=8,f(3)=-1.函数f(x)是奇函数,则f(-6)=-8,f(-3)=1.则2f(-6)+f(-3)=2×(-8)+1=-15.
12.如果f(x)是定义域为R的偶函数,且当x≥0时,f(x)=x2-4x,那么不等式f(x+2)<5的解集是 .
解析 因为f(x)为偶函数,所以f(|x+2|)=f(x+2),则f(x+2)<5可化为f(|x+2|)<5,则|x+2|2-4|x+2|<5,即(|x+2|+1)(|x+2|-5)<0,所以|x+2|<5,解得-7
{x|-2
解 (1)∵f(x)的图象经过点(-2,0),∴0=-2+b,即b=2.∴当x≤-1时,f(x)=x+2.∵f(x)为偶函数,∴当x≥1时,f(x)=f(-x)=-x+2.当-1≤x≤1时,依题意设f(x)=ax2+2(a≠0),则1=a·(-1)2+2,∴a=-1.∴当-1≤x≤1时,f(x)=-x2+2.
(2)当x≤-1时,f(x)=x+2∈(-∞,1];当-1
解 (1)由题意知当x≥0时,f(x)=x2-2x=(x-1)2-1,此时函数f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).又函数f(x)为偶函数,所以当x<0时,其单调递增区间为(-1,0),所以函数f(x)的单调递增区间为(-1,0),(1,+∞).(2)设x<0,则-x>0,所以f(-x)=(-x)2-2(-x)=x2+2x,由已知f(x)=f(-x),所以当x<0时,f(x)=x2+2x,
北师大版 (2019)必修 第一册4.1 函数的奇偶性教案配套ppt课件: 这是一份北师大版 (2019)必修 第一册4.1 函数的奇偶性教案配套ppt课件,共34页。PPT课件主要包含了目录索引,本节要点归纳等内容,欢迎下载使用。
高中数学北师大版 (2019)必修 第一册4.1 函数的奇偶性图片课件ppt: 这是一份高中数学北师大版 (2019)必修 第一册4.1 函数的奇偶性图片课件ppt,共42页。PPT课件主要包含了目录索引,本节要点归纳等内容,欢迎下载使用。
高中数学北师大版 (2019)必修 第一册4.1 函数的奇偶性作业ppt课件: 这是一份高中数学北师大版 (2019)必修 第一册4.1 函数的奇偶性作业ppt课件,共22页。PPT课件主要包含了BCD,ACD等内容,欢迎下载使用。