所属成套资源:高中数学人教A版(2019)选择性必修第一册同步精品课件
高中数学人教A版 (2019)选择性必修 第一册1.2 空间向量基本定理集体备课课件ppt
展开
这是一份高中数学人教A版 (2019)选择性必修 第一册1.2 空间向量基本定理集体备课课件ppt,共24页。PPT课件主要包含了学习目标,复习回顾,1向量共线,2向量共面,情景导入,空间向量基本定理,单位正交基底,基底的辨析,用基底表示向量,课堂小结等内容,欢迎下载使用。
1.了解空间向量基本定理及其意义;2.掌握空间向量的正交分解;3.能够用空间三个不共面的向量作为基底表示其他向量。
对任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb
三个向量共面的充要条件:向量p与不共线向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb
我们所在的教室即是一个三维立体图,如果以教室的一个墙角为始点,沿着三条墙缝作向量可以得到三个空间向量. 思考:这三个空间向量是不共面的,那么如何用这三个向量表示空间中任意的向量呢?
观察右图并回答以下问题,已知正方体ABCDA1B1C1D1的棱长为4,在AB,AD,AD1上分别取单位向量e1,e2,e3.
问题1:e1,e2,e3共面吗?
思考1:基底中能否有零向量?
不能,因为零向量与任意一个非零向量共线,与任意两个非零向量共面.
思考2:空间向量的基底唯一吗?
不唯一,只要三个向量不共面,这三个向量就可以组成空间的一个基底。
思考3:基底选定后,空间中的所有向量均可由该基底唯一表示吗?不同基底下,同一个向量的表达式都相同吗?
基底选定后,空间中的所有向量均可由该基底唯一表示,不一定相同,不同基底下,同一个向量的表达式也有可能不同.
思考4:基底与基向量的概念有什么不同?
一个基底是指一个向量组,一个基向量是指基底中的某一个向量.二者是相关联的不同概念 .
平移向量a,b,c,p使它们共起点,如图所示,以p为体对角线,在a,b,c方向上作平行六面体,易知这个平行六面体是唯一的,因此p在a,b,c方向上的分解是唯一的,即x,y,z是唯一的.
思考5:为什么空间向量基本定理中x,y,z是唯一的?
03空间向量基本定理的应用
2.已知向量{a,b,c}是空间的一个基底,则可以和向量p=a+b,q=a-b构成基底的向量是( )A.a B.b C.a+2b D.a+2c
判断三个空间向量是否共面,若共面,则不能构成基底;若不共面,则能构成基底.方法:①如果向量中存在零向量,则不能作为基底;如果存在一个向量可以用另外的向量线性表示,则不能构成基底.②假设a=λb+μc,运用空间向量基本定理,建立λ,μ的方程组,若有解,则共面,不能作为基底;若无解,则不共面,能作为基底.
4.设x=a+b,y=b+c,z=c+a,且{a,b,c}是空间的一个基底,给出下列向量组:①{a,b,x},②{x,y,z},③{b,c,z},④{x,y,a+b+c}.其中可以作为空间一个基底的向量组有( )A.1个 B.2个 C.3个 D.4个
用基底表示向量时,若基底确定,要充分利用向量加法、减法的三角形法则和平行四边形法则,以及向量数乘的运算律;若没给定基底,首先选择基底,选择时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角是否已知或易求.
相关课件
这是一份高中数学人教A版 (2019)选择性必修 第一册1.2 空间向量基本定理评课课件ppt,共24页。PPT课件主要包含了abc,基向量,单位正交基底,此方程组无解,用基底表示向量,第2课时,所以MN⊥AC1,①适当选取基底,向量运算,向量方法等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第一册1.2 空间向量基本定理课文ppt课件,共23页。
这是一份人教A版 (2019)选择性必修 第一册1.2 空间向量基本定理习题课件ppt,文件包含12pptx、12DOC等2份课件配套教学资源,其中PPT共55页, 欢迎下载使用。