终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学专项训练(9)三角形中常见模型含解析答案

    立即下载
    加入资料篮
    中考数学专项训练(9)三角形中常见模型含解析答案第1页
    中考数学专项训练(9)三角形中常见模型含解析答案第2页
    中考数学专项训练(9)三角形中常见模型含解析答案第3页
    还剩22页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学专项训练(9)三角形中常见模型含解析答案

    展开

    这是一份中考数学专项训练(9)三角形中常见模型含解析答案,共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
    中考数学专项训练(9)三角形中常见模型
    学校:___________姓名:___________班级:___________考号:___________

    一、单选题
    1.如图,中,,直线交于点D,交于点E,则(    ).

    A. B. C. D.
    2.如图,在△ABC中,∠C=70º,沿图中虚线截去∠C,则∠1+∠2=(  )

    A.360º B.250º C.180º D.140º
    3.如图,AB和CD相交于点O,∠A=∠C,则下列结论中不能完全确定正确的是(    )

    A.∠B=∠D B.∠1=∠A+∠D C.∠2>∠D D.∠C=∠D
    4.如图是由线段AB,CD,DF,BF,CA组成的平面图形,,则的度数为  

    A. B. C. D.
    5.如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=(  )

    A.240° B.280° C.360° D.540°
    6.如图,已知在中,,现将一块直角三角板放在上,使三角板的两条直角边分别经过点,直角顶点D落在的内部,则(    ).

    A. B. C. D.
    7.如图所示,∠A+∠B+∠C+∠D+∠E的结果为(    )

    A.90° B.360° C.180° D.无法确定
    8.在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果,,那么的度数是(    ).

    A. B. C. D.
    9.如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为(  )

    A.115° B.120° C.125° D.130°
    10.如图所示,在中,的平分线相交于点F,若且∠ABC=42°,,则等于(    ).

    A. B. C. D.
    11.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=55°,∠1=95°,则∠2的度数为(    ).

    A. B. C. D.
    12.如图,将△ABC沿着DE翻折,使B点与B'点重合,若∠1+∠2=80°,则∠B的度数为(  )

    A.20° B.30° C.40° D.50°
    13.如图,在中,,将沿直线折叠,点C落在点D的位置,则的度数是(    ).

    A. B. C. D.无法确定

    二、填空题
    14.如图是某建筑工地上的人字架,若,那么的度数为 .

    15.如图,在中,,三角形两外角的角平分线交于点E,则 .

    16.如图,若,则 .

    17.如图,五边形在处的外角分别是分别平分和且相交于点P.若,则 .

    18.如图,和分别是的内角平分线和外角平分线,是的平分线,是的平分线,是的平分线,是的平分线,……以此类推,若,则 .

    19.如图,把纸片沿折叠,使点落在图中的处,若,,则的大小为 .

    20.如图,三角形纸片中,,将沿翻折,使点C落在外的点处.若,则的度数为 .


    三、解答题
    21.如图所示,的两边上各有一点,连接,求证.

    22.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.

    23.(1)如图①,求∠A+∠B+∠C+∠D+∠E+∠F的度数;
    (2)如图②,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H的度数;
    (3)如图③,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.

    24.如图所示,已知四边形,求证.

    25.如图(1)所示的图形,像我们常见的学习用品——圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:

    (1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
    (2)请你直接利用以上结论,解决以下三个问题:
    ①如图(2),把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、图(1)XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX =__________°;
    ②如图(3)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;(写出解答过程)
    ③如图(4),∠ABD,∠ACD的10等分线相交于点G1、G2、G9,若∠BDC=140°,∠BG1C=77°,则∠A的度数=__________°.
    26.(1)如图所示,在中,分别是和的平分线,证明:.

    (2)如图所示,的外角平分线和相交于点D,证明:.

    (3)如图所示,的内角平分线和外角平分线相交于点D,证明:.

    27.直线与直线垂直相交于点O,点A在直线上运动,点B在直线上运动.

    (1)如图1,已知分别是和角的平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出的大小.
    (2)如图2,已知不平行分别是和的角平分线,又分别是和的角平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出的度数.
    (3)如图3,延长至G,已知的角平分线与的角平分线及反向延长线相交于,在中,如果有一个角是另一个角的3倍,则的度数为____(直接写答案)

    参考答案:
    1.D
    【分析】根据三角形内角和定理求出,根据平角的概念计算即可.
    【详解】解:,


    故选:D.
    【点睛】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于是解题的关键.
    2.B
    【分析】根据三角形内角和定理得出∠A+∠B=110°,进而利用四边形内角和定理得出答案.
    【详解】解:∵△ABC中,∠C=70°,
    ∴∠A+∠B=180°-∠C,
    ∴∠1+∠2=360°-110°=250°,
    故选:B.
    【点睛】本题主要考查了多边形内角和定理,根据题意得出∠A+∠B的度数是解题关键.
    3.D
    【分析】利用三角形的外角性质,对顶角相等逐一判断即可.
    【详解】∵∠A+∠AOD+∠D=180°,∠C+∠COB+∠B=180°,∠A=∠C,∠AOD=∠BOC,
    ∴∠B=∠D,
    ∵∠1=∠2=∠A+∠D,
    ∴∠2>∠D,
    故选项A,B,C正确,
    故选D.
    【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.
    4.C
    【详解】∵如图可知,,
    又∵,
    ∴,
    又∵,
    ∴,
    又∵,
    ∴,
    故选.
    点睛:本题主要考查了三角形内角和定理即三角形外角与内角的关系,解答本题的关键是求出∠C+∠A+∠F+∠B﹣∠D=180°,此题难度不大.
    5.A
    【分析】根据三角形内角和定理得到∠B与∠C的和,然后在五星中求得∠1与另外四个角的和,加在一起即可.
    【详解】解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,
    ∵∠1+∠2+∠3=180°,∠1=60°,
    ∴∠2+∠3=120°,
    即:∠A+∠E+∠F+∠D=120°,
    ∵∠B+∠C=120°,
    ∴∠A+∠B+∠C+∠D+∠E+∠F=240°.
    故选A.

    【点睛】本题考查了三角形的外角和三角形的内角和的相关知识,解决本题的关键是将题目中的六个角分成两部分来分别求出来,然后再加在一起.
    6.C
    【分析】由三角形内角和定理可得∠ABC+∠ACB+∠A=180°,即∠ABC+∠ACB=180-∠A=140°,再说明∠DBC+∠DCB=90°,进而完成解答.
    【详解】解:∵在△ABC中,∠A=40°
    ∴∠ABC+∠ACB=180-∠A=140°
    ∵在△DBC中,∠BDC=90°
    ∴∠DBC+∠DCB=180°-90°=90°
    ∴40°-90°=50°
    故选C.
    【点睛】本题主要考查三角形内角和定理,灵活运用三角形内角和定理成为解答本题的关键.
    7.C
    【详解】如图,连接BC,
    ∵∠D+∠E+∠DOE=∠BOC+∠OCB+∠BOC=180°,∠DOE=∠BOC,
    ∴∠D+∠E=∠OBC+∠OCB,
    又∵∠A+∠ABO+∠ACO+∠OBC+∠OCB=180°,
    ∴∠A+∠ABO+∠ACO+∠D+∠E=180°.
    故选:C.

    8.B
    【分析】延长BE交CF的延长线于O,连接AO,根据三角形内角和定理求出再利用邻补角的性质求出,再根据四边形的内角和求出,根据邻补角的性质即可求出的度数.
    【详解】延长BE交CF的延长线于O,连接AO,如图,



    同理得








    ∴,
    故选:B.
    【点睛】本题考查三角形内角和定理,多边形内角和,三角形的外角的性质,邻补角的性质,解题关键是会添加辅助线,将已知条件联系起来进行求解.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;邻补角性质:邻补角互补;多边形内角和:.
    9.D
    【详解】∵BE为△ABC的高,∠BAC=50°,
    ∴∠ABE=90°-50°=40°,
    ∵CF为△ABC的高,
    ∴∠BFC=90°,
    ∴∠BHC=∠ABE+∠BFC=40°+90°=130°.
    故选D.
    10.B
    【分析】由∠ABC=42°,∠A=60°,根据三角形内角和等于180°,可得∠ACB的度数,又因为∠ABC、∠ACB的平分线分别为BE、CD,所以可以求得∠FBC和∠FCB的度数,从而求得∠BFC的度数.
    【详解】解:∵.

    又∵∠ABC、∠ACB的平分线分别为BE、CD.
    ∴,
    又∵.
    ∴.
    故选:B.
    【点睛】本题考查三角形内角和和角平分线的相关知识,关键是可以根据题目中的信息,灵活变化求出相应问题的答案.
    11.B
    【分析】根据三角形内角和定理和平角定义证得∠FEB+∠EFC=360°-125°=235°,再根据折叠性质得出∠B′EF+∠EFC′=∠FEB+∠EFC=235°,进而求得∠1+∠2=110°即可求解.
    【详解】解:∵∠A=55°,
    ∴∠AEF+∠AFE=180°-55°=125°,
    ∴∠FEB+∠EFC=360°-125°=235°,
    由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=235°,
    ∴∠1+∠2=235°-125°=110°,
    ∵∠1=95°,
    ∴∠2=110°-95°=15°,
    故选:B.
    【点睛】本题考查折叠性质、三角形的内角和定理、平角定义,熟练掌握折叠性质是解答的关键.
    12.C
    【分析】由折叠的性质可知,再利用平角的定义可求出的度数,进而利用三角形内角和可求∠B的度数.
    【详解】由折叠的性质可知



    故选C
    【点睛】本题主要考查折叠的性质及三角形内角和定理,掌握折叠的性质及三角形内角和定理是解题的关键.
    13.B
    【分析】由折叠的性质得到,再利用外角性质即可求出所求角的度数.
    【详解】解:由折叠的性质得:,
    根据外角性质得:,,
    则,
    则.
    故选:B.

    【点睛】此题考查了翻折变换(折叠问题)以及三角形外角性质,熟练掌握折叠的性质是解本题的关键.
    14.
    【分析】根据平角的定义求出,再利用三角形的外角的性质即可解决问题.
    【详解】解:如图

    ,,



    故答案为:.
    【点睛】本题考查三角形外角的性质、平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考基础题.
    15.61°
    【分析】先根据三角形的内角和定理和平角定义求得∠DAC+∠ACF的度数,再根据角平分线的定义求得∠EAC+∠ECA的度数,即可解答.
    【详解】解:∵∠B+∠BAC+∠BCA=180°,∠B=58°,
    ∴∠BAC+∠BCA=180°﹣∠B=180°﹣58°=122°,
    ∵∠BAC+∠DAC=180°,∠BCA+∠ACF=180°,
    ∴∠DAC+∠ACF=360°﹣(∠BAC+∠BCA)=360°﹣122°=238°,
    ∵AE平分∠DAC,CE平分∠ACF,
    ∴∠EAC=∠DAC,∠ECA=∠ACF,
    ∴∠EAC+∠ECA =(∠DAC+∠ACF)=119°,
    ∵∠EAC+∠ECA+∠AEC=180°,
    ∴∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣119°=61°,
    故答案为:61°.
    【点睛】本题考查三角形的内角和定理、角平分线的定义、平角定义,熟练掌握三角形的内角和定理和角平分线的定义是解答的关键.
    16.230°
    【分析】根据三角形外角的性质,得到∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠EOC=∠1+∠F=115°,∠1=∠A+∠B,即可得到结论.
    【详解】解:如图

    ∵∠EOC=∠E+∠2=115°,∠2=∠D+∠C,
    ∴∠E+∠D+∠C=115°,
    ∵∠EOC=∠1+∠F=115°,∠1=∠A+∠B,
    ∴∠A+∠B+∠F=115°,
    ∴∠A+∠B+∠C+∠D+∠E+∠F=230°,
    故答案为:230°.
    【点睛】本题主要考查三角形内角和定理和三角形外角的性质,解决本题的关键是要熟练掌握三角形外角性质.
    17.105°
    【分析】根据多边形内角和公式求出五边形的内角和,根据题意求出∠BCD+∠CDE的度数,从而求出∠PCD+∠PDC的度数,运用三角形内角和定理即可求出∠CPD的度数.
    【详解】解:∵∠A=160°,∠B=80°,∠E=90°,
    ∴∠BCD+∠CDE=(5−2)×180°−160°−80°−90°=210°,
    ∴∠PCD+∠PDC=(180°×2−210°)=75°,
    在△CPD中,∠CPD=180°−(∠PCD+∠PDC)=180°−75°=105°,
    故答案为:105°.
    【点睛】本题主要考查多边形内角和公式,三角形内角和定理,以及外角的平分线,根据已知条件求出∠BCD+∠CDE的度数是解题的关键.
    18.
    【分析】根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解,同理求出∠A2,∠A3,可以发现后一个角等于前一个角的,根据此规律即可得解.
    【详解】∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,
    ∴∠A1BC=∠ABC,∠A1CD=∠ACD,
    又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,
    ∴(∠A+∠ABC)=∠ABC+∠A1,
    ∴∠A1=∠A,
    ∵∠A=α.
    ∠A1=∠A=α,同理可得∠A2=∠A1=α,
    根据规律推导,
    ∴,
    故答案为.
    【点睛】本题主要考查的是三角形外角性质,角平分线定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.
    19.32°
    【分析】根据折叠性质以及,可知,、、,又∠AED+∠CED=180°,即可求出答案.
    【详解】由折叠的性质可知,

    ∴,
    根据三角形内角和可得:


    故答案为32°.
    20.
    【分析】根据三角形内角和定理求出,根据折叠的性质求出,根据三角形的外角的性质计算,得到答案.
    【详解】解:,,

    由折叠的性质可知,,


    故答案是:.

    【点睛】本题考查的是三角形内角和定理、折叠的性质,掌握三角形内角和等于是解题的关键.
    21.见解析
    【分析】根据三角形的外角等于与它不相邻的两个内角的和证明即可.
    【详解】解:和是的外角,

    又,

    【点睛】本题主要考查三角形外角的性质,熟知三角形的外角等于与它不相邻的两个内角的和是解题的关键.
    22.90°;65°
    【分析】由,可得,根据三角形外角性质可得,因为,即可求得的度数;根据三角形内角和定理可得,即可得的度数.
    【详解】解:,



    综上所述:,.
    【点睛】本题主要考查三角形全等的性质,解题的关键是找到相应等量关系的角,做题时要结合图形进行思考.
    23.(1)360°;(2)720°;(3)540°
    【分析】(1)连接AD,根据三角形的内角和定理得∠B+∠C=∠BAD+∠CDA,进而将问题转化为求四边形ADEF的内角和,
    (2)与(1)方法相同转化为求六边形ABCDEF的内角和,
    (3)使用上述方法,转化为求五边形ABCDE的内角和.
    【详解】解:(1)如图①,连接AD,
    由三角形的内角和定理得,∠B+∠C=∠BAD+∠CDA,
    ∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=∠BAF+∠BAD+∠CDA+∠D+∠E+∠F
    即四边形ADEF的内角和,四边形的内角和为360°,
    ∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=360°,
    (2)如图②,由(1)方法可得:
    ∠BAH+∠B+∠C+∠D+∠E+∠EFG+∠G+∠H的度数等于六边形ABCDEF的内角和,
    ∴∠BAH+∠B+∠C+∠D+∠E+∠EFG+∠G+∠H=(6-2)×180°=720°,
    (3)如图③,根据(1)的方法得,∠F+∠G=∠GAE+∠FEA,
    ∠BAG+∠B+∠C+∠D+∠DEF+∠F+∠G的度数等于五边形ABCDE的内角和,
    ∴∠BAG+∠B+∠C+∠D+∠DEF+∠F+∠G=(5-2)×180°=540°,

    【点睛】本题考查三角形的内角和、多边形的内角和的计算方法,适当的转化是解决问题的关键.
    24.见解析
    【分析】方法1连接BC,根据三角形内角和定理可得结果;
    方法2 作射线,根据三角形的外角性质得到,,两式相加即可得到结论;
    方法3延长BD,交AC于点E,两次运用三角形外角的性质即可得出结论.
    【详解】方法1如图所示,连接BC.

    在中,,即.
    在中,,

    方法2如图所示,连接AD并延长.

    是的外角,
    .
    同理,.
    .
    即.
    方法3如图所示,延长BD,交AC于点E.

    是的外角,
    .
    是的外角,
    .
    .
    【点睛】本题考查了三角形的外角性质:解题的关键是知道三角形的任一外角等于与之不相邻的两内角的和.也考查了三角形内角和定理.
    25.(1)∠BDC=∠A+∠B+∠C,详见解析;(2)①40;②∠DCE=90°;③70
    【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;
    (2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;
    ②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=(∠ADB+∠AEB)+∠A,易得答案.
    ③由②方法,进而可得答案.
    【详解】解:(1)连接AD并延长至点F,
    由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;
    ∵∠BDC=∠BDF+∠CDF,
    ∴∠BDC=∠BAD+∠B+∠C+∠CAD.
    ∵∠BAC=∠BAD+∠CAD;
    ∴∠BDC=∠BAC +∠B+∠C;
    (2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,
    ∵∠A=50°,∠BXC=90°,
    ∴∠ABX+∠ACX=90°﹣50°=40°.
    故答案是:40;
    ②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∠DCE=∠ADC+∠AEC+∠A
    ∵∠DAE=50°,∠DBE=130°,
    ∴∠ADB+∠AEB=80°;
    ∵DC平分∠ADB,EC平分∠AEB,
    ∴∠ADC=∠ADB,∠AEC=∠AEB
    ∴∠DCE=(∠ADB+∠AEB)+∠A=40°+50°=90°;
    ③由②知,∠BG1C=(∠ABD+∠ACD)+ ∠A,
    ∵∠BG1C=77°,
    ∴设∠A为x°,
    ∵∠ABD+∠ACD=140°﹣x°,
    ∴(140﹣x)+x=77,
    ∴14﹣x+x=77,
    ∴x=70,
    ∴∠A为70°.
    故答案是:70.

    【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.
    26.(1)见解析;(2)见解析;(3)见解析
    【详解】(1)设.
    由的内角和为,得.①
    由的内角和为,得.②
    由②得.③
    把③代入①,得,
    即,

    (2)∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,

    由三角形内角和定理得,,
    =180°-[∠A+(∠A+∠ABC+∠ACB)],
    =180°-(∠A+180°),
    =90°-∠A;
    (3)如图:

    ∵BD为△ABC的角平分线,交AC与点E,CD为△ABC外角∠ACE的平分线,两角平分线交于点D
    ∴∠1=∠2,∠5=(∠A+2∠1),∠3=∠4,
    在△ABE中,∠A=180°-∠1-∠3
    ∴∠1+∠3=180°-∠A①
    在△CDE中,∠D=180°-∠4-∠5=180°-∠3-(∠A+2∠1),
    即2∠D=360°-2∠3-∠A-2∠1=360°-2(∠1+∠3)-∠A②,
    把①代入②得∠D=∠A.
    【点睛】此题考查的是三角形内角与外角的关系,角平分线的性质,三角形内角和定理,属中学常规题.
    27.(1)不发生变化,∠AEB=135°;(2)不发生变化,∠CED=67.5°;(3)60°或45°
    【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO的角平分线得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形内角和定理即可得出结论;
    (2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;
    (3)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.
    【详解】解:(1)∠AEB的大小不变,
    ∵直线MN与直线PQ垂直相交于O,
    ∴∠AOB=90°,
    ∴∠OAB+∠OBA=90°,
    ∵AE、BE分别是∠BAO和∠ABO角的平分线,
    ∴∠BAE=∠OAB,∠ABE=∠ABO,
    ∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,
    ∴∠AEB=135°;
    (2)∠CED的大小不变.
    延长AD、BC交于点F.
    ∵直线MN与直线PQ垂直相交于O,
    ∴∠AOB=90°,
    ∴∠OAB+∠OBA=90°,
    ∴∠PAB+∠MBA=270°,
    ∵AD、BC分别是∠BAP和∠ABM的角平分线,
    ∴∠BAD=∠BAP,∠ABC=∠ABM,
    ∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,
    ∴∠F=45°,
    ∴∠FDC+∠FCD=135°,
    ∴∠CDA+∠DCB=225°,
    ∵DE、CE分别是∠ADC和∠BCD的角平分线,
    ∴∠CDE+∠DCE=112.5°,
    ∴∠CED =67.5°;

    (3)∵∠BAO与∠BOQ的角平分线相交于E,
    ∴∠EAO=∠BAO,∠EOQ=∠BOQ,
    ∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,
    ∵AE、AF分别是∠BAO和∠OAG的角平分线,
    ∴∠EAF=90°.
    在△AEF中,
    ∵有一个角是另一个角的3倍,故有:
    ①∠EAF=3∠E,∠E=30°,∠ABO=60°;
    ②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍弃);
    ③∠F=3∠E,∠E=22.5°,∠ABO=45°;
    ④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍弃).
    ∴∠ABO为60°或45°.
    故答案为:60°或45°.
    【点睛】本题考查的是平行线的判定和性质,三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.

    相关试卷

    中考数学专项训练(12)构造等腰三角形模型含解析答案:

    这是一份中考数学专项训练(12)构造等腰三角形模型含解析答案,共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    中考数学专项训练(17)相似三角形常见辅助线模型含解析答案:

    这是一份中考数学专项训练(17)相似三角形常见辅助线模型含解析答案,共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    中考数学专项训练(16)相似三角形常见模型含解析答案:

    这是一份中考数学专项训练(16)相似三角形常见模型含解析答案,共31页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map