


华师大版九年级上册21.3 二次根式的加减优秀复习练习题
展开2023年华东师大版数学九年级上册
《21.3 二次根式的加减》同步练习
一 、选择题
1.下列计算正确的是( )
A.+= B.×= C.=4 D.-=
2.下列二次根式的运算:
①×=2;②-=,③,④;
其中运算正确的有( )
A.1个 B.2个 C.3个 D.4个
3.下列计算中正确的有( )
A.0个 B.1个 C.2个 D.3个
4.下面与是同类二次根式的是( )
A. B. C. D.+2
5.化简的结果是( )
A.16+ B.2+ C.++ D.4+
6.化简-(1-)的结果是( )
A.3 B.-3 C. D.-
7.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是( )
A.20或16 B.20 C.16 D.以上答案均不对
8.估计5﹣的值应在( )
A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间
9.已知a,b分别是6﹣的整数部分和小数部分,则2a﹣b的值为( )
A.3﹣ B.4﹣ C. D.2+
10.若a、b分别是8-的整数部分和小数部分,则a-b的值是( ).
A.3- B.4+ C.4- D.
二 、填空题
11.计算-的结果是 .
12.计算:﹣3+=________.
13.计算:﹣的结果是_________.
14.对于任意实数a,b,定义一种运算&如下:a&b=a(a+b)+b(a-b),如3&2=3(3+2)+2(3-2)=17.那么&=________.
15.已知a+b=-4,ab=2,则 的值等于_____.
16.若+=+,=-,则x+y=_______.
三 、解答题
17.计算:×(﹣1)
18.计算:﹣(3+).
19.计算:(2+7)2﹣(2﹣7)2.
20.计算:(+1)2﹣+(﹣2)2.
21.已知x=-1,求x2+3x-1的值.
22.若8﹣的整数部分是a,小数部分是b,求2ab﹣b2的值.
23.已知,3x2+4xy+3y2求的值.
24.阅读下列材料,回答有关问题:
在实数这章中,遇到过,,,,这样的式子,我们把这样的式子叫做二次根式,根号下的数叫做被开方数.如果一个二次根式的被开方数中有的因数能开得尽方,可以利用=·(a≥0,b≥0);=(a≥0,b>0)将这些因数开出来,从而将二次根式化简.当一个二次根式的被开方数中不含开得尽方的因数或者被开方数中不含有分母时,这样的二次根式叫做最简二次根式,例如,化成最简二次根式是,化成最简二次根式是3,几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如上面的例子中的和就是同类二次根式.
(1)请判断下列各式中,哪些是同类二次根式?
,,,,,.
(2)二次根式中的同类二次根式可以像整式中的同类项一样合并,请计算:
+--+-.
答案
1.B
2.C
3.A
4.B.
5.D
6.A
7.B.
8.C.
9.C
10.C
11.答案为:.
12.答案为:.
13.答案为:.
14.答案为:2+1.
15.答案为:2.
16.答案为:4-
17.解:原式=×﹣=﹣.
18.解:原式=﹣﹣=﹣.
19.解:原式=(2+7+2﹣7)×(2+7﹣2+7)
=4×14=56.
20.解:原式=3+2﹣2+4=7.
21.解:∵x=-1,∴x+1=,
∴(x+1)2=()2=2,即x2+2x+1=2,
∴x2+2x=1,
∴x2+3x-1=x2+2x+x-1=1+x-1=-1.
22.解:∵3<<4,
∴8﹣的整数部分a=4,小数部分b=8﹣﹣4=4﹣,
∴2ab﹣b2=2×4×(4﹣)﹣(4﹣)2=32﹣8﹣27+8=5.
23.解:x=-1,y=+1,原式的值为22
24.解:(1)=5,=3,
=,=,
∴,,是同类二次根式;,,是同类二次根式.
(2)原式=+5-3-+-=-+.
初中数学华师大版九年级上册21.3 二次根式的加减课后测评: 这是一份初中数学华师大版九年级上册21.3 二次根式的加减课后测评,共4页。试卷主要包含了单选题,填空题,计算题等内容,欢迎下载使用。
初中数学华师大版九年级上册21.3 二次根式的加减优秀课堂检测: 这是一份初中数学华师大版九年级上册21.3 二次根式的加减优秀课堂检测,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中华师大版21.3 二次根式的加减课后练习题: 这是一份初中华师大版21.3 二次根式的加减课后练习题,共6页。试卷主要包含了单选题,填空题,计算题等内容,欢迎下载使用。