年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    新高考数学二轮复习圆锥曲线培优专题8 利用均值不等式求圆锥曲线中的最值(含解析)

    新高考数学二轮复习圆锥曲线培优专题8 利用均值不等式求圆锥曲线中的最值(含解析)第1页
    新高考数学二轮复习圆锥曲线培优专题8 利用均值不等式求圆锥曲线中的最值(含解析)第2页
    新高考数学二轮复习圆锥曲线培优专题8 利用均值不等式求圆锥曲线中的最值(含解析)第3页
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学二轮复习圆锥曲线培优专题8 利用均值不等式求圆锥曲线中的最值(含解析)

    展开

    这是一份新高考数学二轮复习圆锥曲线培优专题8 利用均值不等式求圆锥曲线中的最值(含解析),共25页。试卷主要包含了考情分析,解题秘籍,跟踪检测等内容,欢迎下载使用。
    专题8 利用均值不等式求圆锥曲线中的最值一、考情分析与圆锥曲线有关的最值问题,在高考中常以解答题形式考查,且难度较大,它能综合应用函数、三角、不等式等有关知识,因而备受命题者青睐,其中利用均值不等式求圆锥曲线中的最值是一类常见问题,求解时常涉及函数与方程、化归转化等数学思想二、解题秘籍() 利用均值不等式求圆锥曲线中最值的方法与策略利用均值不等式求圆锥曲线中的最值,一是直接根据圆锥曲线中的和(积)为定值的性质求积(和)的最大(小)值,如根据椭圆中为定值,可求的最大值,二是利用代数法,即把要求最值的几何量或代数表达式表示为某个()参数的函数(解析式),然后利用基本不等式求最值,求解这类问题的核心是建立参数之间的等量关系.【例1】(2023届湖北省荆荆宜三校高三上学期9月联考)设椭圆是椭圆的左、右焦点,点在椭圆上,点在椭圆外,且(1)求椭圆的方程;(2),点为椭圆上横坐标大于1的一点,过点的直线与椭圆有且仅有一个交点,并与直线交于MN两点,为坐标原点,记的面积分别为,求的最小值.【解析】(1)因为点在椭圆上,所以因为点在椭圆外,且,所以,即①②解得故椭圆的方程为2)设点,设直线由椭圆性质以及点的横坐标大于1可知,将直线代入方程并化简可得,因为直线与椭圆有且仅有一个交点,所以,即直线的方程为:;直线的方程为联立方程,同理得所以所以所以,则当且仅当,即时,不等式取等号,故当时,取得最小值【例2】已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若直线被圆截得的弦长为,设直线与椭圆交于A两点,为坐标原点,求面积的最大值.【解析】(1由椭圆过点,解得椭圆的方程为.2)直线被圆截得的弦长为,则圆心到直线l的距离d满足,解得的斜率存在时,设,圆心为原点则有.方程代入椭圆方程中整理得:,当且仅当,即时取等号.的斜率不存在时,则,过椭圆的左、右顶点,此时直线与椭圆只有一个交点,不符合题意.面积的最大值为2.() 把距离或长度用单变量表示,然后利用均值不等式求最值.此类问题通常利用两点间距离或弦长公式,把距离或长度表示成关于直线斜率、截距或点的横坐标(纵坐标)的函数,然后利用均值不等式求最值.【例3已知圆C过定点A0p(p0),圆心C在抛物线x22py上运动,若MN为圆Cx轴上截得的弦,设|AM|=m,|AN|=nMANθ.(1)当点C运动时,|MN|是否变化?试证明你的结论;(2)的最大值.【解析】(1)设,则,故圆的方程 ,令,故,解得,故不变化,为定值2)由(1)不妨设,故,故,当且仅当,即时取等号.的最大值为() 把面积表示为单变量函数,然后利用基本不等式求值该类问题求解的基本思路是把三角形面积表示成关于直线斜率与截距的函数,然后利用均值不等式求最值.【例4】(2022届陕西省汉中市高三上学期质量检测已知椭圆的左,右焦点分别为且经过点.(1)求椭圆C的标准方程;(2)若斜率为1的直线与椭圆C交于AB两点,求面积的最大值(O为坐标原点)【解析】(1)由椭圆的定义,可知解得,又.椭圆C的标准方程为.2)设直线l的方程为联立椭圆方程,得,得,则到直线的距离.当且仅当,即时取等号;面积的最大值为.() 把面积用双变量表示,然后利用均值不等式求最值求解该类问题通常先建立两个变量之间的等量关系,然后利用和或积为定值,借助均值不等式求最值.【例52022湖南省长沙市高三上学期11月月考)已知椭圆的离心率为为椭圆上一点.直线不经过原点,且与椭圆交于两点.1)求椭圆的方程;2)求面积的最大值,并求当面积最大时的取值范围.【解析】(1.代入得椭圆方程为.2)设与椭圆联立得:所以.因为,故所以当且仅当时取等号,此时,符合题意.所以,即面积的最大值为.不存在时,设,则,当时取等号.综上,面积的最大值为1面积最大时:存在,则此时不存在,则此时.综上,.()与斜率有关的最值问题与斜率有关的最值问题的思路一是设出动点.是利用斜率定义表示出斜率,然后利用函数或不等式知识求解,二是设出直线的点斜式或斜截式方程,利用根与系数之间的关系或题中条件整理关于斜率的等式或不等式求解.【例6】(2022届福建省福州第十八中学高三上学期考试已知抛物线的焦点到准线的距离为2(1)的方程;(2)已知为坐标原点,点上,点满足,求直线斜率的最大值.【解析】(1)抛物线的焦点,准线方程为由题意,该抛物线焦点到准线的距离为所以该抛物线的方程为2)设,则所以在抛物线上可得,即据此整理可得点的轨迹方程为所以直线的斜率时,时,时,因为此时,当且仅当,即时,等号成立;时,综上,直线的斜率的最大值为.()与数量积有关的最值问题求解与数量积有关的最值问题,通常利用数量积的定义或坐标运算,把数量积表示成某个变量的函数,然后再利用均值不等式求最值.【例7】设椭圆的两条互相垂直的切线的交点轨迹为C,曲线C的两条切线PAPB交于点P,且与C分别切于AB两点,求的最小值.【解析】设椭圆的两切线为轴或 轴时,对应 轴或轴,可知切点为;x轴不垂直且不平行时,,设的斜率为k,则的斜率为,并设 的交点为的方程为,联立得:直线与椭圆相切,,得k是方程的一个根,同理是方程的另一个根,,其中交点的轨迹方程为:也满足上式;综上知:轨迹C方程为,则在中应用余弦定理知, ,即,则当且仅当,即时,取得最小综上,的最小为.三、跟踪检测1.(2023届山东省青岛市高三上学期检测)在平面直角坐标系中,动圆与圆内切,且与圆外切,记动圆的圆心的轨迹为.(1)求轨迹的方程;(2)不过圆心且与轴垂直的直线交轨迹两个不同的点,连接交轨迹于点.i)若直线轴于点,证明:为一个定点;ii)若过圆心的直线交轨迹两个不同的点,且,求四边形面积的最小值.【解析】(1)设动圆的半径为,圆心的坐标为由题意可知:圆的圆心为,半径为;圆的圆心为,半径为.动圆与圆内切,且与圆外切,动圆的圆心的轨迹是以为焦点的椭圆,设其方程为:其中从而轨迹的方程为:2)(i)设直线的方程为,则可得:直线的方程为可得点的横坐标为:为一个定点,其坐标为ii)根据(i)可进一步求得:.四边形面积(法一)等号当且仅当时取,即时,(法二)令,即时,2.已知椭圆经过点,且椭圆的离心率,过椭圆的右焦点作两条互相垂直的直线,分别交椭圆于点(1)求椭圆的方程;(2)求证:为定值;(3)的最小值.【解析】(1)由,得由椭圆过点知,联立①②式解得故椭圆的方程是2为定值证明:椭圆的右焦点为,分两种情况.不妨设当的斜率不存在时,.此时当直线的斜率存在时,,则又设点联立方程组消去并化简得由题知,直线的斜率为同理可得所以为定值.3解:由(2)知当且仅当,即,即时取等号,的最小值为3.(2023届四川省隆昌市第一中学高三上学期考试)已知离心率为的椭圆过点,抛物线(1)若抛物线的焦点恰为椭圆的右顶点,求抛物线方程;(2)若椭圆与抛物线在第一象限的交点为,过但不经过原点的直线交椭圆,交抛物线,且,求的最大值,并求出此时直线的斜率.【解析】(1)由,所以将点代入椭圆得:椭圆,所以的右顶点为,依题意,所以抛物线方程为2)设直线的方程为联立,消去整理得,显然,所以联立,消去整理得,且由抛物线方程得,所以点坐标为将点代入椭圆方程有:整理得:,令,则当且仅当,即直线的斜率取等号,所以,即的最大值为,此时直线的斜率为4.平面直角坐标系中,椭圆的焦距为,过焦点的最短弦长为.(1)求椭圆的标准方程;(2)斜率为的直线与椭圆交于两点,为椭圆上异于的点,求的面积的最大值.【解析】(1)由题意得故椭圆的标准方程为2)设直线的方程为,则,,,设时,的距离最大时,点在第二象限且过点的切线正好与平行, 设切线方程为,此时的距离最大为的面积,当且仅当时取等号. 时,的距离最大时,点在第四象限且过点的切线正好与平行, 设切线方程为,此时的距离最大为的面积,当且仅当时取等号. 所以的面积的最大值为.5.平面直角坐标系中,过点的圆与直线相切.圆心的轨迹记为曲线(1)求曲线的方程;(2)为曲线上的两点,记中点为,过的垂线交轴于时,求的最大值.【解析】(1)设,由题意,则的距离等于的距离,故的轨迹为抛物线2)设,则,令,得,故,即由题意,即,故6.已知点分别为椭圆的左右焦点,直线与椭圆有且仅有一个公共点,直线,垂足分别为点.(1)求证:(2)求证:为定值,并求出该定值;(3)的最大值.【解析】(1)联立得:由直线与椭圆有一个公共点可知:化简得:2)由题意得:因为,所以,故其中所以为定值,该定值为13由题意得:点在直线的同侧,所以,(其中的夹角),由此可知:当且仅当时,等号成立,所以的最大值为4.7.2022广东省佛山市高三上学期12月模拟)在平面直角坐标系中,椭圆的离心率,且点在椭圆.1)求椭圆的方程;2)若点都在椭圆上,且中点在线段(不包括端点).面积的最大值.【解析】(1)离心率,将代入椭圆方程,可得,又联立上述方程,可得:椭圆方程为2)设可得:相减可得:由题意,,即直线的斜率故可设直线,代入椭圆方程可得:,解得的距离为面积为当且仅当,即时,取得最大值.8.(2022衡水金卷高三一轮复习摸底测试)已知椭圆的上顶点为,过点且与轴垂直的直线被截得的线段长为.1)求椭圆的标准方程2)设直线交椭圆于异于点两点,以为直径的圆经过点线段的中垂线轴的交点为,求的取值范围.【解析】(1)由已知条件得:,令,得由题意知:,解得椭圆的标准方程为2当直线的斜率不存在时,显然不合题意;当直线斜率存在时,设时,此时关于y轴对称,令,则,又,解得(),则符合题设.此时有时,则,得,则,得,即,整理得,解得(舍去),代入得:,得:则线段的中垂线轴上截距,而综合①②:线段的中垂线轴上的截距的取值范围是.9.(2022河北省高三上学期12月教学质量监测)在平面直角坐标系中,已知点,点满足,点的轨迹为.1)求的方程;2)不过的直线交于两点,若直线的斜率是直线斜率的等差中项,直线和线段的垂直平分线与轴分别交于,求的最小值.【解析】(1)由椭圆的定义知,点在以为焦点且的椭圆上,所以其方程为:2)由题意得直线的斜率存在且不为0.直线的方程为直线方程与椭圆方程联立得所以由题意得,即整理得直线不过,解得线段的中点为,线段中垂线方程为时,,直线轴交点的纵坐标时,最小,最小值为2.10.已知两圆,动圆在圆内部且和圆内切,和圆外切.1)求动圆圆心的轨迹的方程;2)过点的直线与曲线交于两点.关于轴的对称点为,求面积的最大值.【解析】(1)依题意,圆的圆心,半径,圆的圆心,半径设圆的半径为,则有,因此,于是得点的轨迹是以为焦点,长轴长的椭圆,此时,焦距,短半轴长b有:所以动圆圆心的轨迹的方程为:.2)显然直线不垂直于坐标轴,设直线的方程为消去得:,则关于轴的对称点,如图,显然3的两侧,即同号,于是得当且仅当,即时取“=”,因此,当时,所以面积的最大值.11.已知椭圆)的离心率为,分别过左、右焦点作两条平行直线.1)求之间距离的最大值;2)设的一个交点为的一个交点为,且位于轴同侧,求四边形面积的最大值.【解析】(1椭圆)的离心率为,且设直线;直线.之间距离时,2)根据题意,不妨设直线与椭圆交于AD两点,直线与椭圆交于BN两点,,且,即四边形ABND为平行四边形,四边形面积为四边形ABND面积的一半,由(1)知,联立方程 ,当且仅当时,取等号.故四边形面积的最大值.12.(2022广西玉林市、贵港市高三12月模拟)设椭圆两点,为坐标原点.1)求椭圆的方程;2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且?若存在,写出该圆的方程,并求的取值范围;若不存在,说明理由.【解析】(1)将的坐标代入椭圆的方程得解得所以椭圆的方程为2)假设满足题意的圆存在,其方程为,其中设该圆的任意一条切线和椭圆交于两点,当直线的斜率存在时,令直线的方程为将其代入椭圆的方程并整理得由韦达定理得因为,所以代入并整理得联立因为直线和圆相切,因此,由所以存在圆满足题意.当切线的斜率不存在时,易得由椭圆方程得,显然综上所述,存在圆满足题意.当切线的斜率存在时,由①②④,得当切线的斜率不存在时,易得所以综上所述,存在圆心在原点的圆满足题意,且13.(2022上海市青浦区高三一模)已知抛物线.1)过抛物线焦点的直线交抛物线于两点,求的值(其中为坐标原点);2)过抛物线上一点,分别作两条直线交抛物线于另外两点,交直线两点,求证:为常数3)已知点,在抛物线上是否存在异于点的两个不同点,使得若存在,求点纵坐标的取值范围,若不存在,请说明理由.【解析】(1)由题知,直线斜率不为0,故可设过焦点的直线为,联立,设2)由题可设过点的一条直线交抛物线于,交直线,另一条直线交抛物线于,交直线,则,直线方程可表示为:,直线方程可表示为:,联立直线与抛物线方程可得,故,即,同理联立直线和抛物线方程化简可得,故,即3假设存在点满足,易知化简得,即时,,当且仅当时取到等号,故时,,当且仅当时取到等号,因为,故,令,则,但能取到,此时,故.
     

    相关试卷

    新高考数学二轮复习圆锥曲线培优专题9 利用函数思想求圆锥曲线中的最值与范围问题(含解析):

    这是一份新高考数学二轮复习圆锥曲线培优专题9 利用函数思想求圆锥曲线中的最值与范围问题(含解析),共29页。试卷主要包含了考情分析,解题秘籍,跟踪检测等内容,欢迎下载使用。

    新高考数学二轮复习圆锥曲线培优专题07 圆锥曲线中的定值问题(含解析):

    这是一份新高考数学二轮复习圆锥曲线培优专题07 圆锥曲线中的定值问题(含解析),共31页。试卷主要包含了考情分析,解题秘籍,跟踪检测等内容,欢迎下载使用。

    新高考数学二轮复习百题必刷题专题28 圆锥曲线求范围及最值六种类型大题(含解析):

    这是一份新高考数学二轮复习百题必刷题专题28 圆锥曲线求范围及最值六种类型大题(含解析),共139页。试卷主要包含了已知抛物线E,已知椭圆,已知抛物线Г,已知椭圆的长轴长为,点在上.等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map