新高考数学三轮复习考前冲刺逐题训练小题满分练6(含解析)
展开小题满分练6
一、单项选择题
1.设集合M={x|x>4},N={x|x2>4},则( )
A.M⊆N B.N⊆M
C.M⊆∁RN D.N⊆∁RM
答案 A
解析 N={x|x2>4}={x|x>2或x<-2},
∴M⊆N,A正确,B错误;
∁RN={x|-2≤x≤2},∁RM={x|x≤4},
可知C,D均错误.
2.(2022·开封模拟)命题“∀x∈R,x+|x|≥0”的否定是( )
A.∀x∈R,x+|x|<0
B.∀x∈R,x+|x|≠0
C.∃x∈R,x+|x|≥0
D.∃x∈R,x+|x|<0
答案 D
解析 因为命题“∀x∈R,x+|x|≥0”是全称量词命题,所以其否定是存在量词命题,即“∃x∈R,x+|x|<0”.
3.棣莫弗公式[r(cos θ+isin θ)]n=rn(cos nθ+isin nθ)(i为虚数单位,r>0)是由法国数学家棣莫弗(1667-1754)发现的.根据棣莫弗公式,在复平面内,复数15对应的点位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 A
解析 由题意得15
=215
=215cos +215sin ·i,
对应的点的坐标为,
是第一象限角,其正弦、余弦都为正数,即对应点的横坐标和纵坐标均为正数,故点在第一象限.
4.(2022·宁波模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是(e是自然对数的底数)( )
A.f(x)=
B.f(x)=
C.f(x)=
D.f(x)=
答案 A
解析 由图知,x≠1,可排除B,C;又由图可知f(0)>0,因为选项D中函数f(x)=,
则f(0)==-1<0,故D错误.
5.(2022·泰安模拟)某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=ekx+b(e为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )
A.16小时 B.20小时
C.24小时 D.28小时
答案 C
解析 由题意,得
即
于是当x=33时,y=e33k+b=(e11k)3·eb
=3×192=24(小时).
6.(2022·东北师大附中模拟)某中学为响应国家“双减”政策,开设了乒乓球、羽毛球、书法、小提琴4门选修课程,要求每位同学每学年至多选修2门,初一到初三这三学年将4门选修课程选修完,则每位同学的不同选修方式有( )
A.60种 B.78种
C.54种 D.84种
答案 C
解析 根据题意,三年修完4门选修课程,每学年至多选修2门,
则每位同学每年所修课程数为1,1,2或0,2,2.
先将4门课程按照1,1,2分成三组有种方式,再分到三个学年,有A种方式,
所以不同的选修方式有×A=36(种);
再将4门课程按照0,2,2分成三组有种方式,
再分到三个学年,有A种方式,
所以不同的选修方式有×A=18(种),
综上,共有36+18=54(种).
7.(2022·吕梁模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,b=3,BD为AC边上的中线,BD=2,且acos C-2bcos B+ccos A=0,则△ABC的面积为( )
A.2 B. C. D.
答案 C
解析 ∵acos C-2bcos B+ccos A=0,
由正弦定理得
sin Acos C-2sin Bcos B+sin Ccos A=0,
∴sin(A+C)-2sin Bcos B=0,
又A+B+C=π,
∴sin B-2sin Bcos B=0,
∵B是三角形内角,
∴sin B≠0,
∴cos B=,
∴B=,
由余弦定理得
b2=a2+c2-2accos B,即9=a2+c2-ac,
又=(+),
∴||2=(||2+||2+2·),
即4=(a2+c2+ac),
解得ac=,
∴S△ABC=acsin B=××=.
8.已知x∈(0,+∞),不等式ax+eax≥ln x+x恒成立,则实数a的最小值为( )
A. B. C.0 D.1
答案 A
解析 设f(x)=x+ex,显然f(x)是增函数,
不等式ax+eax≥ln x+x可变形为ax+eax≥ln x+eln x,即f(ax)≥f(ln x),所以ax≥ln x.
所以a≥,
令g(x)=,x>0,
则g′(x)=,
当0<x<e时,g′(x)>0,g(x)单调递增;
当x>e时,g′(x)<0,g(x)单调递减,
所以g(x)max=g(e)=,
因为不等式a≥恒成立,所以a≥.
即a的最小值是.
二、多项选择题
9.(2022·临沂模拟)给出下列说法,其中正确的是( )
A.若数据x1,x2,…,xn的方差s2为0,则此组数据的众数唯一
B.已知一组数据2,3,5,7,8,9,9,11,则该组数据的第40百分位数为6
C.一组样本数据的频率分布直方图是单峰的且形状是对称的,则该组数据的平均数和中位数应该大体上差不多
D.经验回归直线=x+恒过样本点的中心(,),且在经验回归直线上的样本点越多,拟合效果越好
答案 AC
解析 选项A,由方差s2=[(x1-)2+(x2-)2+…+(xn-)2]=0,
可得x1=x2=…=xn=,即此组数据众数唯一,故A正确;
选项B,数据2,3,5,7,8,9,9,11,共有8个数,由8×40%=3.2可知,该组数据的第40百分位数为第4个数7,故B错误;
选项C,依据中位数定义和平均数定义,一组样本数据的频率分布直方图是单峰的且形状是对称的,则该组数据的平均数和中位数应该大体上差不多,故C正确;
选项D,经验回归直线的拟合效果看残差平方和,残差平方和越小,拟合效果越好,而不是经验回归直线上的样本点越多,拟合效果越好,故D错误.
10.(2022·潍坊模拟)已知向量=(1,2),将绕原点O旋转-30°,30°,60°到,,的位置,则( )
A.·=0
B.||=||
C.·=·
D.点P1的坐标为
答案 ABC
解析 因为绕原点O旋转-30°,30°,60°到,,,
所以与的夹角为90°,
故·=0,A选项正确;
由题意知,△OPP1≌△OPP2,
所以PP1=PP2,即||=||,故B正确;
因为〈,〉=60°,
〈,〉=60°,
||=||=||=||,
所以由数量积的定义知·=·,
故C正确;
若点P1的坐标为,
则||=≠||=,故D不正确.
11.(2022·永州模拟)已知函数f(x)是定义在R上的奇函数,f(x+1)是偶函数,并且当x∈(0,1]时,f(x)=2|x-2|-3,则下列选项正确的是( )
A.f(x)在(-3,-2)上单调递减
B.f(x)在上小于0
C.f(x)在[1,2]上单调递增
D.f(x)的图象关于直线x=3对称
答案 BD
解析 因为f(x)是奇函数,f(x+1)是偶函数,
所以函数f(x)的图象关于点(0,0)中心对称,
且关于直线x=1轴对称,则f(x)的周期为4,
当x∈(0,1]时,f(x)=2|x-2|-3=1-2x,
则函数f(x)在(0,1)上单调递减,
根据对称性可得f(x)在(1,2)上单调递增,
再结合周期性可得f(x)在(-3,-2)上单调递增,故A错误;
f(x)在上小于0,根据对称性可得f(x)在上小于0,故B正确;
f(x)的图象关于直线x=1轴对称,
所以f =f =0,f(2)=f(0)=0,
所以f(x)不可能在[1,2]上单调递增,故C错误;
f(x)的图象关于直线x=1轴对称,
又f(x)是奇函数,
所以f(x)的图象关于直线x=-1轴对称,
因为f(x)的周期为4,
所以f(x)关于直线x=3对称,故D正确.
12.(2022·南通模拟)已知抛物线E:y2=4x的焦点为F,准线为l,过F的直线与E交于A,B两点,C,D分别为A,B在l上的射影,且|AF|=2|BF|,M为AB中点,则下列结论正确的是( )
A.∠CFD=90°
B.直线AB的斜率为±
C.△AOB的面积为
D.△CMD为等腰直角三角形
答案 AC
解析 令∠AFC=α,∠BFD=β,
∵|AC|=|AF|,∴∠ACF=α,∠CAF=π-2α,
∵|BF|=|BD|,
∴∠BDF=β,∠DBF=π-2β.
又∵π-2α+π-2β=π,∴α+β=,
∴∠CFD=90°,A正确;
设AB:x=my+1,
令A(x1,y1),B(x2,y2),
由
消去x可得y2-4my-4=0,
则y1+y2=4m,y1y2=-4.
∵=2,∴y1=-2y2,
∴y1=-2,y2=,m=-,此时k=-2,
或y1=2,y2=-,m=,此时k=2,
即k=±2,B错误;
|AB|=x1+1+x2+1=x1+x2+2
=my1+my2+4=,
O到AB的距离d==,
∴S△AOB=××=,C正确;
令m=,则AB:x=y+1,
此时A(2,2),B,M,
C(-1,2),D(-1,-),|DM|=,
|CM|=,|CD|=3,CM2+DM2≠CD2,
∴△CDM不是等腰直角三角形,D错误.
三、填空题
13.(2022·日照模拟)已知第一象限的点M(a,b)在直线x+y-1=0上,则+的最小值是____________.
答案 3+2
解析 因为第一象限的点M(a,b)在直线x+y-1=0上,所以a+b=1,a>0,b>0,
所以+=(a+b)
=3++≥3+2,
当且仅当a=-1,b=2-时,等号成立.
14.(2022·广东六校联考)已知角α,β的顶点为坐标原点,始边与x轴的非负半轴重合,角β的终边与单位圆x2+y2=1交于点,角α的终边与角β的终边关于y轴对称,则cos(α-β)=________.
答案 -
解析 因为角β的终边与圆x2+y2=1交于点,所以sin β=,cos β=-,
因为角α的终边与角β的终边关于y轴对称,
所以sin α=,cos α=,
所以cos(α-β)=cos αcos β+sin αsin β=-.
15.(2022·鹰潭模拟)图1是程阳永济桥又名“风雨桥”,因为行人过往能够躲避风雨而得名.已知程阳永济桥上的塔从上往下看,其边界构成的曲线可以看作正六边形结构,如图2所示,且各层的六边形的边长均为整数,从内往外依次成等差数列,若这四层六边形的周长之和为156,且图2中阴影部分的面积为,则最外层六边形的周长为______.
答案 48
解析 设该图形中各层的六边形边长从内向外依次为a1,a2,a3,a4,成等差数列,设公差为d,
由题意得6(a1+a2+a3+a4)=156,
即a1+a2+a3+a4=26,
所以2a1+3d=13,①
因为阴影部分的面积
S=6××(a-a)=,
所以2a1d+d2=11,②
联立①②解得或(不符合题意,舍去),故a4=a1+3d=8,
所以最外层六边形的周长为48.
16.(2022·莆田质检)定义:若A,B,C,D为球面上四点,E,F分别是AB,CD的中点,则把以EF为直径的球称为AB,CD的“伴随球”.已知A,B,C,D是半径为2的球面上四点,AB=CD=2,则AB,
CD的“伴随球”的直径取值范围为________;若A,B,C,D不共面,则四面体ABCD体积的最大值为________.
答案 (0,2] 4
解析 设O为A,B,C,D所在球面的球心,
∴OA=OC=2.
∵AB=CD=2,且E,F分别是AB,CD的中点,
∴OE⊥AB,OF⊥CD,且AE=CF=,
∴OE=OF=1,
则E,F均是以O为球心,1为半径的球面上的点,
若以EF为直径作球,
则0<EF≤OE+OF=2,
即AB,CD的“伴随球”的直径取值范围是(0,2];
∵E是AB的中点,
∴VA-BCD=2VA-CDE=S△CDE·d,
d为点A到平面CDE的距离,d≤AE=,
又S△CDE=CD·h,h为点E到CD的距离,h≤EF≤2,
∴VA-BCD≤××=4,
当且仅当E,O,F三点共线,且AB⊥CD时,等号成立.
新高考数学三轮复习考前冲刺逐题训练小题满分练8(含解析): 这是一份新高考数学三轮复习考前冲刺逐题训练小题满分练8(含解析),共10页。试卷主要包含了单项选择题,多项选择题,填空题等内容,欢迎下载使用。
新高考数学三轮复习考前冲刺逐题训练小题满分练7(含解析): 这是一份新高考数学三轮复习考前冲刺逐题训练小题满分练7(含解析),共10页。试卷主要包含了单项选择题,多项选择题,填空题等内容,欢迎下载使用。
新高考数学三轮复习考前冲刺逐题训练小题满分练5(含解析): 这是一份新高考数学三轮复习考前冲刺逐题训练小题满分练5(含解析),共10页。试卷主要包含了单项选择题,多项选择题,填空题等内容,欢迎下载使用。