新高考数学三轮复习考前冲刺逐题训练小题满分练7(含解析)
展开小题满分练7
一、单项选择题
1.(2022·全国甲卷)若z=-1+i,则等于( )
A.-1+i B.-1-i
C.-+i D.--i
答案 C
解析 =
==-+i,故选C.
2.定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={1,2,3},则集合A*B的所有元素之和为( )
A.16 B.18 C.14 D.8
答案 A
解析 由题设知A*B={1,2,3,4,6},
∴所有元素之和为1+2+3+4+6=16.
3.(2022·卓越高中联盟联考)若“∃x∈R,sin x-cos x=a”为假命题,则实数a的取值范围是( )
A.[-2,2] B.(-2,2)
C.(-∞,-2]∪[2,+∞) D.(-∞,-2)∪(2,+∞)
答案 D
解析 因为“∃x∈R,sin x-cos x=a”为假命题,
则“∀x∈R,sin x-cos x≠a”为真命题,因为f(x)=sin x-cos x=2sin∈[-2,2],
所以实数a的取值范围是(-∞,-2)∪(2,+∞).
4.(2022·湖北七市(州)联考)某学校高一年级、高二年级、高三年级的人数分别为1 600,1 100,800,现用比例分配的分层随机抽样的方法从高一年级、高二年级、高三年级抽取一个学生样本测量学生的身高.如果在这个样本中,有高一年级学生32人,且测得高一年级、高二年级、高三年级学生的平均身高分别为160 cm,165 cm,170 cm.则下列说法正确的是( )
A.高三年级抽取的学生人数为32
B.高二年级每个学生被抽取到的概率为
C.所有年级中,高一年级每个学生被抽取到的概率最大
D.所有学生的平均身高估计要小于165 cm
答案 D
解析 根据比例分配的分层随机抽样的定义,高三抽取的学生人数为×32=16,A错误;
分层随机抽样中每个个体被抽取的概率相等,均为=,B错误,C错误;
平均身高为×160+×165+×170≈163.9(cm),D正确.
5.(2022·全国乙卷)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{bn}:b1=1+,b2=1+,b3=1+,…,依此类推,其中αk∈N*(k=1,2,…).则( )
A.b1<b5 B.b3<b8
C.b6<b2 D.b4<b7
答案 D
解析 方法一 当n取奇数时,
由已知b1=1+,b3=1+,
因为>,所以b1>b3,
同理可得b3>b5,b5>b7,…,
于是可得b1>b3>b5>b7>…,故A不正确;
当n取偶数时,由已知b2=1+,
b4=1+,
因为>,所以b2<b4,
同理可得b4<b6,b6<b8,…,
于是可得b2<b4<b6<b8<…,故C不正确;
因为>,所以b1>b2,
同理可得b3>b4,b5>b6,b7>b8,
又b3>b7,所以b3>b8,故B不正确;故选D.
方法二 (特殊值法)
不妨取αk=1(k=1,2,…),则b1=1+=2,
b2=1+=1+=1+=,
b3=1+=1+=1+=,
所以b4=1+=1+=,
b5=1+=1+=,
b6=1+=1+=,
b7=1+=1+=,
b8=1+=1+=.逐一判断选项可知选D.
6.(2022·咸阳模拟)设a>0,b>0,2是4a与4b的等比中项,则的最大值为( )
A. B. C. D.
答案 B
解析 ∵2是4a与4b的等比中项,
∴4a·4b=22,∴a+b=1.
∵=,
+=(a+b)
=5++≥5+2=9,
当且仅当a=,b=时取等号,
∴≤,
∴的最大值为.
7.(2022·湖北八市联考)各种不同的进制在我们生活中随处可见,计算机使用的是二进制,数学运算一般使用十进制.通常我们用函数f(x)=表示在x进制下表达M(M>1)个数字的效率,则下列选项中表达效率最高的是( )
A.二进制 B.三进制
C.八进制 D.十进制
答案 B
解析 因为f(x)==
=·,
f′(x)=·,
令f′(x)>0,易知f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,而f(2)=f(4),故可得f(3)>f(2)>f(8)>f(10).则效率最高的是三进制.
8.(2022·长沙十六校联考)如图,在△ABC中,AB=4,AC=3,∠BAC=90°,D在边BC上,延长AD到P,使得AP=9,若=m+(m为常数),则CD的长度是( )
A. B.0或
C. D.0或
答案 D
解析 ∵A,D,P三点共线,
∴可设=λ(λ>0),
∵=m+,
∴λ=m+,
即=+,
当m≠0且m≠时,B,D,C三点共线,
∴+=1,即λ=,
∵AP=9,∴AD=3,
∵AB=4,AC=3,∠BAC=90°,
∴BC=5,
设CD=x,∠CDA=θ,
则BD=5-x,∠BDA=π-θ.
∴根据余弦定理可得
cos θ==,
cos(π-θ)==,
∵cos θ+cos(π-θ)=0,
∴+=0,
解得x=,
∴CD的长度为;
当m=0时,=,C,D重合,此时CD的长度为0;
当m=时,=,即=+,
B,D重合,此时PA=12,不符合题意,舍去.
二、多项选择题
9.(2022·新高考全国Ⅰ)已知正方体ABCD-A1B1C1D1,则( )
A.直线BC1与DA1所成的角为90°
B.直线BC1与CA1所成的角为90°
C.直线BC1与平面BB1D1D所成的角为45°
D.直线BC1与平面ABCD所成的角为45°
答案 ABD
解析 如图,连接AD1,在正方形A1ADD1中,AD1⊥DA1,因为AD1∥BC1,所以BC1⊥DA1,所以直线BC1与DA1所成的角为90°,故A正确;
在正方体ABCD-A1B1C1D1中,CD⊥平面BCC1B1,又BC1⊂平面BCC1B1,所以CD⊥BC1.连接B1C,则B1C⊥BC1.因为CD∩B1C=C,CD,B1C⊂平面DCB1A1,所以BC1⊥平面DCB1A1,又CA1⊂平面DCB1A1,所以BC1⊥CA1,所以直线BC1与CA1所成的角为90°,故B正确;
连接A1C1,交B1D1于点O,则易得OC1⊥平面BB1D1D,连接OB.因为OB⊂平面BB1D1D,所以OC1⊥OB,∠OBC1为直线BC1与平面BB1D1D所成的角.设正方体的棱长为a,则易得BC1=a,OC1=,所以在Rt△BOC1中,OC1=BC1,所以∠OBC1=30°,故C错误;
因为C1C⊥平面ABCD,所以∠CBC1为直线BC1与平面ABCD所成的角,易得∠CBC1=45°,故D正确.故选ABD.
10.在数列{an}中,对任意n∈N*,都有=k(k为常数),则称{an}为“等差比数列”.下面对“等差比数列”的判断正确的是( )
A.k不可能为0
B.等差数列一定是等差比数列
C.等比数列一定是等差比数列
D.通项公式为an=a·bn+c(a≠0,b≠0,1)的数列一定是等差比数列
答案 AD
解析 A选项,若k=0,则数列{an}是常数列,所以分母为0,所以k不可能为0,故A正确;
B选项,当等差数列是常数列时,分母等于0,不成立,故B错误;
C选项,当等比数列是常数列时,分母等于0,不成立,故C错误;
D选项,因为an=a·bn+c(a≠0,b≠0,1),
所以
=
==b,为常数,是等差比数列,
故D正确.
11.(2022·湖南六校联考)已知椭圆C:+=1上有一点P,F1,F2分别为其左、右焦点,∠F1PF2=θ,△F1PF2的面积为S,则下列说法正确的是( )
A.△F1PF2的周长为4+2
B.角θ的最大值为90°
C.若S=,则相应的点P共有2个
D.若△F1PF2是钝角三角形,则S的取值范围是(0,)
答案 ABD
解析 由已知可得a=2,b=,
所以c=,△F1PF2的周长为2a+2c=4+2,故A正确;
因为b=c,所以以F1F2为直径的圆与椭圆C相切于上、下顶点,
所以θ≤90°,故B正确;
设△F1PF2的边F1F2上的高为h,
则S=×2×h=h=,
所以h=1<=b,由椭圆的对称性可知,点P共有4个,故C错误;
因为△PF1F2为钝角三角形,所以△PF1F2中有一个角大于90°,
由选项B知∠F1PF2不可能为钝角,
所以∠PF2F1或∠PF1F2为钝角,
当∠PF2F1=90°时,
将x=代入+=1得y=±1,此时△F1PF2的面积为S=×2×1=,所以若△F1PF2是钝角三角形,则其面积S∈(0,),故D正确.
12.(2022·苏州模拟)已知直线y=a与曲线y=相交于A,B两点,与曲线y=相交于B,C两点,A,B,C的横坐标分别为x1,x2,x3,则( )
A. B.x2=ln x1
C. D.x1x3=x
答案 ACD
解析 y=,
令y′==0,则x=1.
则y=在(-∞,1)上单调递增,在(1,+∞)上单调递减,ymax=.y=,
令y′==0,则x=e,
则y=在(0,e)上单调递增,在(e,+∞)上单调递减,
∴ymax=.
=a,则x2=,A正确;
=a== ,
y=在(0,1)上单调递增,
0<x1<1,1<x2<e,0<ln x2<1,
∴x1=ln x2,B错误;
=a=,
y=在(e,+∞)上单调递减,
∈(e,ee),x3>e,
∴=x3,C正确;
x1x3=ln x2=·ax2=x,D正确.
三、填空题
13.(2022·日照模拟)6展开式中的常数项为________.
答案
解析 Tk+1=Cx6-kk
令6-k=0,得k=4,
∴常数项为4C=.
14.(2022·潍坊模拟)已知函数f(x)=则f(-1)+f(log312)=__________.
答案 7
解析 因为函数f(x)=
所以f(-1)=2+log22=3,
f(log312)=
所以f(-1)+f(log312)=7.
15.(2022·盐城模拟)某同学的通用技术作品如图所示,该作品由两个相同的正四棱柱制作而成.已知正四棱柱的底面边长为3 cm,这两个正四棱柱的公共部分构成的多面体的面数为__________,体积为________ cm3.
答案 8 18
解析 公共部分是两个正四棱锥且底面重叠的空间几何体,共8个面.
底面是以3 cm为边长的正方形,
其面积为S=18 cm2,
其中一个正四棱锥的高为 cm.
∴V=×18××2=18(cm3).
16.若函数y=f(x)的定义域内存在x1,x2(x1≠x2),使 =1成立,则称该函数为“互补函数”.若函数f(x)=cos-sin(ω>0)在[π,2π]上为“互补函数”,则ω的取值范围为______________.
答案 ∪
解析 f(x)=cos+sin
=cos=sin ωx,
由“互补函数”的定义得,存在x1,x2∈[π,2π](x1≠x2),f(x1)+f(x2)=2,
所以令t=ωx,则函数y=sin t在区间[ωπ,2ωπ]上至少存在两个极大值点,
则ωπ≥2π,得ω≥2.
当2T=2×≤π,即ω≥4时,显然符合题意;
当2≤ω<4时,分以下两种情况讨论,
当ωπ≤,即ω≤时,2ωπ≥,即ω≥,
所以≤ω≤;
当<ωπ<4π,
即<ω<4时,
2ωπ≥,即ω≥,
所以≤ω<4.
综上,ω的取值范围为∪.
新高考数学三轮复习考前冲刺逐题训练小题满分练8(含解析): 这是一份新高考数学三轮复习考前冲刺逐题训练小题满分练8(含解析),共10页。试卷主要包含了单项选择题,多项选择题,填空题等内容,欢迎下载使用。
新高考数学三轮复习考前冲刺逐题训练小题满分练6(含解析): 这是一份新高考数学三轮复习考前冲刺逐题训练小题满分练6(含解析),共10页。试卷主要包含了单项选择题,多项选择题,填空题等内容,欢迎下载使用。
新高考数学三轮复习考前冲刺逐题训练小题满分练5(含解析): 这是一份新高考数学三轮复习考前冲刺逐题训练小题满分练5(含解析),共10页。试卷主要包含了单项选择题,多项选择题,填空题等内容,欢迎下载使用。