所属成套资源:人教版六年级数学上册专题训练【精品检测卷】
人教版六年级数学上册【课本】六年级(上)第04讲 对应计数
展开
这是一份人教版六年级数学上册【课本】六年级(上)第04讲 对应计数,共7页。
第四讲 对应计数 有9个球排成一行:我们往其中插入两块(相同的)木板,就能够把这9个球分成三堆,例如:可以看到,插入两块木板把9个球分成三堆的方法很多,那么到底有多少种插入木板的方法呢?每相邻两个小球之间有一个空隙,一共有8个空隙.插入的两块木板要把小球分成三堆,说明两块木板要放在两个不同的空隙之中.8个空隙选两个,共有种方法.如果要把三堆小球分别装入颜色为红、黄、蓝的三个袋子里,又有多少种装法呢?其实,所谓装入红、黄、蓝三个袋子,就是把球分成三堆,因此答案也是28.这样我们就把“小球装袋”问题转化成“小球插板”问题来求解了,这种方法我们称之为“插板法”.“插板法”是一种特殊的对应技巧,能够帮我们解决很多计数问题.
例1. 把20个苹果分给3个小朋友,每个小朋友至少分1个,共有多少种分苹果的方法?如果可以有小朋友没有分到苹果,共有多少种分法?
【分析】
「分析」题目的第一问与我们上面的小球插板问题非常相似,如何用“插板法”求解呢?第二问允许有的“小朋友没有分到苹果”,还能不能用“插板法”呢?
练习1、龟丞相把7个顶级乌龟壳分给4只小乌龟.如果每只小乌龟至少分一个,共有多少种分法?如果可以有的小乌龟没有分到乌龟壳,共有多少种方法?
例2. 某班40名学生参加了一项关于“超市是否应该提供免费塑料袋”的调查,每人均在“应该提供”、“不应该提供”和“无所谓”三个选项中做出了选择.请问:三个选项的统计数字共有多少种不同的可能?「分析」题目只关心三个选项的统计数字,需要具体考虑每个学生所作的选择吗?
练习2、8名同学做同一道单选题,它有A、B、C、D四个选项,每个同学都选了其中一个选项.老师为了调查同学们的做题情况,把选择各个选项的人数都做了统计,则有多少种可能的统计结果?
最早的计数方法——对应法我们这一讲学习对应的计数方法,这种计数方法有很强的技巧性,很考验思维能力.也许你觉得这种对应法不是那么容易掌握,但它其实是非常有用,而且历史悠久的.人类最早使用的计数方法不是枚举,不是排列组合,也不是递推,而是对应!对应法最早的应用是结绳计数.最早期的时候,人类还没有发明数字.因而用枚举等其他方法来记录数量的多少是不可能办到的.这时,人们的计数方法是在绳子上打结或者在树上刻痕.用绳子上的结的数目或者树上划痕的道数来记录补获了多少猎物,采集了多少花果.这个时期持续了很长时间,因为人类的历史已经有几百万年,而数字的发明距今还不到1万年,在人类历史上的大部分时间,使用的计数方法是对应法——结绳计数.结绳记数这种方法,不但在远古时候使用,而且一直在某些民族中沿用下来.宋朝人在一本书中说:“鞑靼无文字,每调发军马,即结草为约,使人传达,急于星火.”这是用结草来调发军马,传达要调的人数呢!其他如藏族、彝族等,虽都有文字,但在一般不识字的人中间都还长期使用这种方法.中央民族大学就收藏着一副高山族的结绳,由两条绳组成:每条上有两个结,再把两条绳结在一起.有趣的是,结绳计数不止在我们中国古代用过,在国外也有很多结绳计数的记载.传说古波斯王有一次打仗,命令手下兵马守一座桥,要守60天.为了让将士们不少守一天也不多守一天,波斯王用一根长长的皮条,把上面系了60个扣.他对守桥的官兵们说:“我走后你们一天解一个扣,什么时候解完了,你们就可以回家了.”对应是最原始的计数方法,充分蕴含着人类的智慧.
例3. 在的方格棋盘中,一共可以数出多少个如下图所示的由4个单位小正方形组成的“L”型?
「分析」要把“L”型放入的方格棋盘的方格盘中,按照放的方向分,可以有8种情形,那么是不是需要对每一个方向的“L”型分别进行计数呢?
练习3、在的方格棋盘中,一共可以数出多少个如下图所示的由3个单位小正方形组成的图形?
例4. (1)一只青蛙沿着一条直线跳跃4次后回到起点.如果它每一次跳跃的长度都是1分米,那么这只青蛙共有多少种可能的跳法?
(2)如果这只青蛙在一个方格边长为1分米的方格纸上沿格线跳跃4次后回到起点,每次跳跃的长度仍是1分米,那么这只青蛙共有多少种可能的跳法?
「分析」(1)青蛙在直线上跳跃4次后要回到起点,如果一直往一个方向跳,显然是不行的.那么青蛙应该怎么跳呢?
(2)青蛙在方格表上跳跃4次后要回到起点,现在青蛙有哪些跳跃的方向,每个方向上各应该跳跃多少次呢?
练习4、一只青蛙沿着一条直线跳跃6次后回到起点.如果它每一次跳跃的长度都是1分米,那么这只青蛙共有多少种可能的跳法?
对应法是一种很巧的计数方法,但如何建立对应关系,是其中的难点.之前几道题,对应关系的建立相对比较直接,而有些问题,则需要通过大量的分析,才能找出隐藏的对应关系.
例5. 常昊与古力两人进行围棋“棋圣”冠军争霸赛,谁先胜4局即获得比赛的胜利.请问:比赛过程一共有多少种不同的方式? 「分析」由对称性,只需求出常昊获胜的比赛过程有多少种.比赛最多进行7场,其中常昊一定胜4场.如果我们按比赛先后顺序给每场比赛编号,那么常昊胜的4场比赛编号,就决定了整个比赛流程.而常昊获胜的比赛可以是哪4场呢?
例6. 海淀大街上一共有18盏路灯,区政府为了节约用电,打算熄灭其中的7盏.但为了行路安全,任意相邻的两盏灯不能同时被熄灭,请问:一共有多少种熄灯方案?「分析」你能用插板法求解这道题吗?
作业一部电视连续剧共8集,电视台要在周一到周四这4天内按顺序播完,其中可以有若干天不播,共有多少种安排播出的方法?165
现在有12道竞赛题,卡莉娅要在今天、明天、后天这三天内按顺序做完,但每一天可以做很多道题也可以一道不做.共有多少种安排做题的方案?91
阿呆在玩PSP格斗游戏,游戏采用的是五局三胜制(阿呆VS电脑),谁先胜三场谁就获得胜利.如果最后阿呆获胜,那么一共有多少种可能的比赛过程?(只考虑每场比赛的胜负)10
在的方格棋盘中,一共可以数出多少个如图所示的由5个单位小正方形组成的“凹”字形?
80
(1)有8个鸡蛋,每天至少吃1个,一共吃了5天,有多少种不同的吃法?35
(2)有8个鸡蛋,每天至少吃2个,一共吃了3天,有多少种不同的吃法?6
(注:这8个鸡蛋看作完全相同)
相关试卷
这是一份人教版六年级数学上册【课本】六年级(上)第20讲 计数综合提高下,共6页。
这是一份人教版六年级数学上册【课本】六年级(上)第19讲 计数综合提高上,共5页。试卷主要包含了简单枚举.,分类枚举.,特殊的枚举等内容,欢迎下载使用。
这是一份人教版六年级数学上册【课本】六年级(上)第09讲 几何综合,共8页。试卷主要包含了14),8?等内容,欢迎下载使用。