初中湘教版第4章 锐角三角函数4.3 解直角三角形第2课时教学设计
展开第2课时 与坡度、坡角有关的实际问题
1.了解测量中坡度、坡角的概念;
2.掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度有关的实际问题.
3.通过对例题的学习,使学生能够利用所学知识解决实际问题.
4.进一步培养学生把实际问题转化为数学问题的能力.
【教学重点】
能利用解直角三角形的知识,解决与坡度有关的实际问题.
【教学难点】
能利用解直角三角形的知识,解决与坡度有关的实际问题.
一、情境导入,初步认识
如图所示,斜坡AB和斜坡A1B1,哪一个倾斜程度比较大?显然,斜坡A1B1的倾斜程度比较大,说明∠A1>∠A.
从图形可以看出,,
即tanA1>tanA.
【教学说明】通过实际问题的引入,提高学生学习的兴趣.
二、思考探究,获取新知
1.坡度的概念,坡度与坡角的关系.
如上图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平前进的距离的比叫作坡度(或坡比),记作i,即i=,坡度通常用l∶m的形式,例如上图中的1∶2的形式.坡面与水平面的夹角叫作坡角,记作α.从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡.
2.如图,一山坡的坡度为i=1∶2,小刚从山脚A出发,沿山坡向上走了240米到达点C,这座山坡的坡角是多少度?小刚上升了多少米?(角度精确到0.01°,长度精确到0.1米)
【教学说明】教师引导学生分析题目中的已知条件分别代表的是什么,将图形中的信息转化为图形中的已知条件,再分析图形求出问题.学生独立完成.
三、运用新知,深化理解
1.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24°,求斜坡上相邻两树的坡面距离是多少(精确到0.1m).
分析:引导学生将实际问题转化为数学问题画出图形.
解:已知:在Rt△ABC中,∠C=90°,AC=5.5,∠A=24°,求AB.
在Rt△ABC中,cosA=,
∴AB=≈6.0(米)
答:斜坡上相邻两树间的坡面距离约是6.0米.
2.同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m).
解:作BE⊥AD,CF⊥AD,在Rt△ABE和Rt△CDF中,
,
∴AE=3BE=3×23=69(m).
FD=2.5CF=2.5×23=57.5(m).
∴AD=AE+EF+FD=69+6+57.5=132.5(m).
因为斜坡AB的坡度i=tanα=≈0.3333,
所以α≈18°26′.
∵=sinα,
∴AB=≈72.7(m).
答:斜坡AB的坡角α约为18°26′,坝底宽AD为132.5米,斜坡AB的长约为72.7米.
3.庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度i=1∶3,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)
解:过点A作AD⊥BC于点D,
在Rt△ADC中,由i=1∶得tanC=,∴∠C=30°∴AD=AC=×240=120(米)
在Rt△ABD中,∠B=45°∴AB=AD=120(米)
120÷(240÷24)=120÷10=12(米/分钟)
答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A.
4.某公园有一滑梯,横截面如图所示,AB表示楼梯,BC表示平台,CD表示滑道.若点E,F均在线段AD上,四边形BCEF是矩形,且sin∠BAF=,BF=3米,BC=1米,CD=6米.求:
(1) ∠D的度数;(2)线段AE的长.
解:(1)∵四边形BCEF是矩形,
∴∠BFE=∠CEF=90°,CE=BF,BC=FE,
∴∠BFA=∠CED=90°,
∵CE=BF,BF=3米,
∴CE=3米,
∵CD=6米,∠CED=90°,
∴∠D=30°.
(2)∵sin∠BAF=,
∴,
∵BF=3米,∴AB=米,
∴AF=米,∴AE=米.
四、师生互动,课堂小结
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.
布置作业:教材“习题4.4”中第1、7题.
通过本节课的学习,使学生知道坡度、坡角的概念,能利用解直角三角形的知识解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决.
初中数学华师大版九年级上册24.4 解直角三角形教案: 这是一份初中数学华师大版九年级上册24.4 解直角三角形教案,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点等内容,欢迎下载使用。
初中数学湘教版九年级上册4.3 解直角三角形精品教学设计: 这是一份初中数学湘教版九年级上册4.3 解直角三角形精品教学设计,共7页。教案主要包含了直接运用三个关系解直角三角形,小结,作业,板书设计,教学反思等内容,欢迎下载使用。
初中数学湘教版九年级上册第4章 锐角三角函数4.3 解直角三角形一等奖第2课时教学设计: 这是一份初中数学湘教版九年级上册第4章 锐角三角函数4.3 解直角三角形一等奖第2课时教学设计,共9页。教案主要包含了坡度,方向角等内容,欢迎下载使用。