终身会员
搜索
    上传资料 赚现金
    中考数学一轮复习核心考点精讲精练专题25 图形的相似(2份打包,原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      中考数学一轮复习核心考点精讲精练专题25 图形的相似(原卷版).doc
    • 解析
      中考数学一轮复习核心考点精讲精练专题25 图形的相似(解析版).doc
    中考数学一轮复习核心考点精讲精练专题25 图形的相似(2份打包,原卷版+解析版)01
    中考数学一轮复习核心考点精讲精练专题25 图形的相似(2份打包,原卷版+解析版)02
    中考数学一轮复习核心考点精讲精练专题25 图形的相似(2份打包,原卷版+解析版)03
    中考数学一轮复习核心考点精讲精练专题25 图形的相似(2份打包,原卷版+解析版)01
    中考数学一轮复习核心考点精讲精练专题25 图形的相似(2份打包,原卷版+解析版)02
    中考数学一轮复习核心考点精讲精练专题25 图形的相似(2份打包,原卷版+解析版)03
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学一轮复习核心考点精讲精练专题25 图形的相似(2份打包,原卷版+解析版)

    展开
    这是一份中考数学一轮复习核心考点精讲精练专题25 图形的相似(2份打包,原卷版+解析版),文件包含中考数学一轮复习核心考点精讲精练专题25图形的相似原卷版doc、中考数学一轮复习核心考点精讲精练专题25图形的相似解析版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    专题25 图形的相似
    一、平行线分线段成比例
    【核心考点精讲】
    1、三条平行线截两条直线,所得的对应线段成比例。
    2、推论
    (1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
    (2)如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
    (3)平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得三角形的三边与原三角形的三边对应成比例。
    【热点题型精练】
    1.(2022•丽水中考)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段AB=3,则线段BC的长是(  )

    A. B.1 C. D.2
    解:过点A作平行横线的垂线,交点B所在的平行横线于D,交点C所在的平行横线于E,

    则,即2,
    解得:BC,
    答案:C.
    2.(2022•巴中中考)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为(  )

    A.4 B.5 C.6 D.7
    解:∵CD∥OB,
    ∴,
    ∵AC:OC=1:2,
    ∴,
    ∵C、D两点纵坐标分别为1、3,
    ∴CD=3﹣1=2,
    ∴,
    解得:OB=6,
    ∴B点的纵坐标为6,
    答案:C.
    3.(2022•南昌模拟)如图,在平行四边形ABCD中,点F是AD上的点,AF=2FD,直线BF交AC于点E,交CD的延长线于点G,则的值为(  )

    A. B. C. D.
    解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AB∥CD,AD=BC=3k,
    ∴,

    答案:C.
    4.(2022•苏州模拟)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC= 1:3 .

    解:作DF∥AE交BC于F,如图,

    ∵OE∥DF,
    ∴1,
    即BE=EF,
    ∵DF∥AE,
    ∴,
    ∴CF=2EF,
    ∴BE:EC=BE:3BE=1:3.
    答案:1:3.
    5.(2022•襄阳中考)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为  5 .

    解:如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.

    ∵AE平分∠BAC,FM⊥AB,FN⊥AC,
    ∴FM=FN,
    ∴3,
    ∴AB=3AD,
    设AD=DC=a,则AB=3a,
    ∵AD=DC,DT∥AE,
    ∴ET=CT,
    ∴3,
    设ET=CT=b,则BE=3b,
    ∵AB+BE=3,
    ∴3a+3b=3,
    ∴a+b,
    ∴△ABC的周长=AB+AC+BC=5a+5b=5,
    答案:5.
    6.(2022•无锡模拟)如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为  .

    解:如图,过点D作DF∥AE,

    则,
    ∵,
    ∴DF=2EC,
    ∴DO=2OC,
    ∴DODC,
    ∴S△ADOS△ADC,S△BDOS△BDC,
    ∴S△ABOS△ABC,
    ∵∠ACB=90°,
    ∴C在以AB为直径的圆上,设圆心为G,
    当CG⊥AB时,△ABC的面积最大为:4×2=4,
    此时△ABO的面积最大为:4.
    答案:.
    二、相似三角形的判定与性质
    【核心考点精讲】
    1、相似三角形的判定
    (1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。(两角对应相等,两个三角形相似)
    (2)如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。(两边对应成比例且夹角相等,两个三角形相似)
    (3)如果两个三角形的三组对应边成比例,那么这两个三角形相似。(三边对应成比例,两个三角形相似)
    (4)两三角形三边对应平行,则两三角形相似。(三边对应平行,两个三角形相似)
    (5)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。(斜边与直角边对应成比例,两个直角三角形相似)
    2、相似三角形的性质
    (1)相似三角形对应角相等,对应边成正比例。
    (2)相似三角形对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径)的比等于相似比。
    (3)相似三角形周长的比等于相似比。
    (4)相似三角形面积的比等于相似比的平方。
    【热点题型精练】
    7.(2022•连云港中考)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是(  )
    A.54 B.36 C.27 D.21
    解:设2对应的边是x,3对应的边是y,
    ∵△ABC∽△DEF,
    ∴,
    ∴x=6,y=9,
    ∴△DEF的周长是27;
    8.(2022•徐州中考)如图,若方格纸中每个小正方形的边长均为1,则阴影部分的面积为(  )

    A.5 B.6 C. D.
    解:∵CD∥AB,
    ∴△ABE∽△CDE,
    ∴,
    ∴,

    答案:C.
    9.(2022•绍兴中考)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是(  )

    A. B. C.10 D.
    解:如右图1所示,

    由已知可得,△DFE∽△ECB,
    则,
    设DF=x,CE=y,
    则,
    解得,
    ∴DE=CD+CE=6,故选项B不符合题意;
    EB=DF+AD2,故选项D不符合题意;
    如图2所示,

    由已知可得,△DCF∽△FEB,
    则,
    设FC=m,FD=n,
    则,
    解得,
    ∴FD=10,故选项C不符合题意;
    BF=FC+BC=8+7=15;
    如图3所示:

    此时两个直角三角形的斜边长为6和7;
    答案:A.
    10.(2022•达州中考)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为(  )

    A.9 B.12 C.15 D.18
    解:∵四边形ABCD是矩形,
    ∴AD=BC,∠A=∠EBF=∠BCD=90°,
    ∵将矩形ABCD沿直线DE折叠,
    ∴AD=DF=BC,∠A=∠DFE=90°,
    ∴∠BFE+∠DFC=∠BFE+∠BEF=90°,
    ∴∠BEF=∠CFD,
    ∴△BEF∽△CFD,
    ∴,
    ∵CD=3BF,
    ∴CF=3BE=12,
    设BF=x,则CD=3x,DF=BC=x+12,
    ∵∠C=90°,
    ∴Rt△CDF中,CD2+CF2=DF2,
    ∴(3x)2+122=(x+12)2,
    解得x=3(舍去0根),
    ∴AD=DF=3+12=15,
    答案:C.
    11.(2022•连云港中考)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②ABAD;③GEDF;④OC=2OF;⑤△COF∽△CEG.其中正确的是(  )

    A.①②③ B.①③④ C.①④⑤ D.②③④
    解:由折叠性质可得:DG=OG=AG,AE=OE=BE,OC=BC,
    ∠DGF=∠FGO,∠AGE=∠OGE,∠AEG=∠OEG,∠OEC=∠BEC,
    ∴∠FGE=∠FGO+∠OGE=90°,∠GEC=∠OEG+∠OEC=90°,
    ∴∠FGE+∠GEC=180°,
    ∴GF∥CE,故①正确;
    设AD=2a,AB=2b,则DG=OG=AG=a,AE=OE=BE=b,
    ∴CG=OG+OC=3a,
    在Rt△CGE中,CG2=GE2+CE2,
    (3a)2=a2+b2+b2+(2a)2,
    解得:ba,
    ∴ABAD,故②错误;
    在Rt△COF中,设OF=DF=x,则CF=2b﹣x=2a﹣x,
    ∴x2+(2a)2=(2a﹣x)2,
    解得:xa,
    ∴DFaa,2OF=2a=2a,
    在Rt△AGE中,GEa,
    ∴GEDF,OC=2OF,故③④正确;
    无法证明∠FCO=∠GCE,
    ∴无法判断△COF∽△CEG,故⑤错误;
    综上,正确的是①③④,
    答案:B.
    12.(2022•盐城中考)如图,在△ABC与△A′B′C′中,点D、D′分别在边BC、B′C′上,且△ACD∽△A′C′D′,若  ③(答案不唯一) ,则△ABD∽△A′B′D′.
    请从①;②;③∠BAD=∠B′A′D′这3个选项中选择一个作为条件(写序号),并加以证明.

    解:③.
    理由如下:∵△ACD∽△A′C′D′,
    ∴∠ADC=∠A'D'C',
    ∴∠ADB=∠A'D'B',
    又∵∠BAD=∠B′A′D′,
    ∴△ABD∽△A'B'D'.
    同理,选①也可以.
    答案:③(答案不唯一).
    13.(2022•淮安中考)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AC边上的一点,过点D作DF∥AB,交BC于点F,作∠BAC的平分线交DF于点E,连接BE.若△ABE的面积是2,则的值是   .

    解:在Rt△ABC中,由勾股定理得,AB=5,
    ∵△ABE的面积是2,
    ∴点E到AB的距离为,
    在Rt△ABC中,点C到AB的距离为,
    ∴点C到DF的距离为,
    ∵DF∥AB,
    ∴△CDF∽△CAB,
    ∴,
    ∴CD=2,DF,
    ∵AE平分∠CAB,
    ∴∠BAE=∠CAE,
    ∵DF∥AB,
    ∴∠AED=∠BAE,
    ∴∠DAE=∠DEA,
    ∴DA=DE=1,
    ∴EF=DF﹣DE1,
    ∴,
    答案:.
    14.(2022•湖北中考)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时t的值为  22 .

    解:如图,连接AP,

    由图2可得AB=BC=4cm,
    ∵∠B=36°,AB=BC,
    ∴∠BAC=∠C=72°,
    ∵AP平分∠BAC,
    ∴∠BAP=∠PAC=∠B=36°,
    ∴AP=BP,∠APC=72°=∠C,
    ∴AP=AC=BP,
    ∵∠PAC=∠B,∠C=∠C,
    ∴△APC∽△BAC,
    ∴,
    ∴AP2=AB•PC=4(4﹣AP),
    ∴AP=22=BP,(负值舍去),
    ∴t22,
    答案:22.
    15.(2022•上海中考)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.
    求证:(1)∠CAE=∠BAF;
    (2)CF•FQ=AF•BQ.

    证明:(1)∵AB=AC,
    ∴∠B=∠C,
    ∵CF=BE,
    ∴CF﹣EF=BE﹣EF,
    即CE=BF,
    在△ACE和△ABF中,

    ∴△ACE≌△ABF(SAS),
    ∴∠CAE=∠BAF;
    (2)∵△ACE≌△ABF,
    ∴AE=AF,∠CAE=∠BAF,
    ∵AE2=AQ•AB,AC=AB,
    ∴,
    ∴△ACE∽△AFQ,
    ∴∠AEC=∠AQF,
    ∴∠AEF=∠BQF,
    ∵AE=AF,
    ∴∠AEF=∠AFE,
    ∴∠BQF=∠AFE,
    ∵∠B=∠C,
    ∴△CAF∽△BFQ,
    ∴,
    即CF•FQ=AF•BQ.
    16.(2022•泰安中考)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.
    (1)若BE平分∠CBD,求证:BF⊥AC;
    (2)找出图中与△OBF相似的三角形,并说明理由;
    (3)若OF=3,EF=2,求DE的长度.

    (1)证明:如图,

    在矩形ABCD中,OD=OC,AB∥CD,∠BCD=90°,
    ∴∠2=∠3=∠4,∠3+∠5=90°,
    ∵DE=BE,
    ∴∠1=∠2,
    又∵BE平分∠DBC,
    ∴∠1=∠6,
    ∴∠3=∠6,
    ∴∠6+∠5=90°,
    ∴BF⊥AC;
    (2)解:与△OBF相似的三角形有△ECF,△BAF理由如下:
    ∵∠1=∠3,∠EFC=∠BFO,
    ∴△ECF∽△OBF,
    ∵DE=BE,
    ∴∠1=∠2,
    又∵∠2=∠4,
    ∴∠1=∠4,
    又∵∠BFA=∠OFB,
    ∴△BAF∽△OBF;
    (3)解:在矩形ABCD中,∠4=∠3=∠2,
    ∵∠1=∠2,∴∠1=∠4.
    又∵∠OFB=∠BFA,
    ∴△OBF∽△BFA.
    ∵∠1=∠3,∠OFB=∠EFC,
    ∴△OBF∽△ECF.
    ∴,
    ∴,即3CF=2BF,
    ∴3(CF+OF)=3CF+9=2BF+9,
    ∴3OC=2BF+9
    ∴3OA=2BF+9①,
    ∵△ABF∽△BOF,
    ∴,
    ∴BF2=OF•AF,
    ∴BF2=3(OA+3)②,
    联立①②,可得BF=1±(负值舍去),
    ∴DE=BE=2+13.
    三、位似变换
    【核心考点精讲】
    1、位似图形的概念:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么两个图形叫做位似图形,这个点叫做位似中心。
    2、位似图形与坐标:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于k或﹣k。
    【热点题型精练】
    17.(2022•重庆中考)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是(  )

    A.1:2 B.1:4 C.1:3 D.1:9
    解:∵△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,
    ∴△ABC与△DEF的周长之比是1:2,
    答案:A.
    18.(2022•梧州中考)如图,以点O为位似中心,作四边形ABCD的位似图形A′B′C′D′,已知,若四边形ABCD的面积是2,则四边形A′B′C′D′的面积是(  )

    A.4 B.6 C.16 D.18
    解:∵以点O为位似中心,作四边形ABCD的位似图形A′B′C′D′,,
    ∴,
    则四边形A′B′C′D′面积为:18.
    答案:D.
    19.(2022•威海中考)由12个有公共顶点O的直角三角形拼成如图所示的图形,∠AOB=∠BOC=∠COD=…=∠LOM=30°.若S△AOB=1,则图中与△AOB位似的三角形的面积为(  )

    A.()3 B.()7 C.()6 D.()6
    解:在Rt△AOB中,∠AOB=30°,
    ∵cos∠AOB,
    ∴OBOA,
    同理,OCOB,
    ∴OC=()2OA,
    ……
    OG=()6OA,
    由位似图形的概念可知,△GOH与△AOB位似,且位似比为()6,
    ∵S△AOB=1,
    ∴S△GOH=[()6]2=()6,
    答案:C.
    20.(2022•潍坊中考)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为  4π .

    解:如图,连接B′D′.设B′D′的中点为O.

    ∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,
    又∵正方形ABCD的面积为4,
    ∴正方形A′B′C′D′的面积为16,
    ∴A′B′=A′D′=4,
    ∵∠B′A′D′=90°,
    ∴B′D′A′B′=4,
    ∴正方形A′B′C′D′的外接圆的周长=4π,
    答案:4π.
    21.(2022•黔西南州中考)如图,在平面直角坐标系中,△OAB与△OCD位似,位似中心是坐标原点O.若点A(4,0),点C(2,0),则△OAB与△OCD周长的比值是  2 .

    解:∵△OAB与△OCD位似,位似中心是坐标原点O,
    而点A(4,0),点C(2,0),
    ∴相似比为4:2=2:1,
    ∴△OAB与△OCD周长的比值为2.
    答案:2.
    22.(2022•河池中考)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).
    (1)画出与△ABC关于y轴对称的△A1B1C1;
    (2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.

    解:(1)如图,△A1B1C1为所作;
    (2)如图,△A2B2C2为所作,点B2的坐标为(﹣4,﹣6);





    相关试卷

    中考数学一轮复习核心考点精讲精练专题24 图形的变换(2份打包,原卷版+解析版): 这是一份中考数学一轮复习核心考点精讲精练专题24 图形的变换(2份打包,原卷版+解析版),文件包含中考数学一轮复习核心考点精讲精练专题24图形的变换原卷版doc、中考数学一轮复习核心考点精讲精练专题24图形的变换解析版doc等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。

    中考数学一轮复习核心考点精讲精练专题23 命题与证明(2份打包,原卷版+解析版): 这是一份中考数学一轮复习核心考点精讲精练专题23 命题与证明(2份打包,原卷版+解析版),文件包含中考数学一轮复习核心考点精讲精练专题23命题与证明原卷版doc、中考数学一轮复习核心考点精讲精练专题23命题与证明解析版doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。

    中考数学一轮复习核心考点精讲精练专题22 尺规作图(2份打包,原卷版+解析版): 这是一份中考数学一轮复习核心考点精讲精练专题22 尺规作图(2份打包,原卷版+解析版),文件包含中考数学一轮复习核心考点精讲精练专题22尺规作图原卷版doc、中考数学一轮复习核心考点精讲精练专题22尺规作图解析版doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考数学一轮复习核心考点精讲精练专题25 图形的相似(2份打包,原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map