数学高考第一轮复习特训卷(文科)34 随机事件的概率、古典概型与几何概型
展开
这是一份数学高考第一轮复习特训卷(文科)34 随机事件的概率、古典概型与几何概型,共3页。
第十一单元 概率与统计点点练34 随机事件的概率、古典概型与几何概型一 基础小题练透篇1.[2022·沈阳联考]一个盒子内装有若干个大小相同的红球、白球和黑球,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么从盒中摸出1个球,摸出黑球或红球的概率是( ) A.0.3 B.0.55 C.0.7 D.0.752.从某班5名学生(其中男生3人,女生2人)中任选3人参加学校组织的社会实践活动,则所选3人中至少有1名女生的概率为( )A. B. C. D.3.[2022·江西上饶模拟]上海地铁2号线早高峰时每隔4.5分钟一班,其中含列车在车站停留的0.5分钟.假设乘客到达站台的时刻是随机的,则乘客到达站台立即能乘上车的概率为( )A. B. C. D.4.[2022·安徽六安检测]用4种不同颜色给甲、乙两个小球随机涂色,每个小球只涂一种颜色,则两个小球颜色不同的概率为( )A. B. C. D.5.有标号分别为1、2、3的蓝色卡片和标号分别为1、2的绿色卡片,从这五张卡片中任取两张,这两张卡片颜色不同且标号之和小于4的概率是( )A. B. C. D.6.用3种不同颜色给甲、乙两个小球随机涂色,每个小球只涂一种颜色,则两个小球颜色不同的概率为( )A. B. C. D.7.[2022·唐山市摸底]在边长为1的正五边形的五个顶点中,任取两个顶点,则两顶点间距离大于1的概率为________. 二 能力小题提升篇1.[2022·安徽蚌埠质检]从1,2,3,4中选取两个不同数字组成两位数,则这个两位数能被4整除的概率为( )A. B. C. D.2.[2022·沈阳市质检]某英语初学者在拼写单词“steak”时,对后三个字母的记忆有些模糊,他只记得由“a”“e”“k”三个字母组成并且“k”只可能在最后两个位置,如果他根据已有信息填入上述三个字母,那么他拼写正确的概率为( )A. B. C. D.3.[2022·郑州市检测]已知矩形ABCD中,BC=2AB=4,现向矩形ABCD内随机投掷质点M,则满足·≥0的概率是( )A. B. C. D.4.[2022·河北九校联考]博览会安排了分别标有“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车.方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )A.P1·P2= B.P1=P2=C.P1<P2 D.P1+P2=5.[2022·河南南阳测试]从数字1,2,3中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为________.6.[2022·安徽池州模拟]小明忘记了微信登录密码的后两位,只记得最后一位是字母A,a,B,b中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登录的概率是________. 三 高考小题重现篇1.[全国卷Ⅲ]若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3 B.0.4 C.0.6 D.0.72.[2019·全国卷Ⅱ]生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A. B. C. D.3.[2019·全国卷Ⅲ]两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )A. B. C. D.4.[2020·全国卷Ⅰ]设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为( )A. B. C. D.5.[2020·江苏卷]将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.6.[江苏卷]记函数f(x)=的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是________. 四 经典大题强化篇1.央视《开学第一课》播出后,社会各界反响强烈.某兴趣小组为了了解某校学生对《开学第一课》的满意程度,从该校随机抽取了100名学生对该节目进行打分(满分100分),并把相关的统计结果记录如下:分数段[50,60)[60,70)[70,80)[80,90)[90,100]频数19183240(1)试估计这100名学生对该节目打分的平均值(同一组中的数据用该组区间的中点值作代表);(2)将频率视为概率,该兴趣小组用分层抽样的方法从打分为[60,70)和[70,80)的学生中抽取6人,再从这6人中随机抽取2名学生进行详细调查,记“这2名学生的打分在同一分数段”为事件M,求事件M发生的概率. 2.[2022·安徽五校检测]一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量(单位:辆)如表: A类轿车B类轿车C类轿车舒适型100150z标准型300450600按类用分层抽样的方法从这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值;(2)用分层抽样的方法从C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数xi(1≤i≤8,i∈N),设样本平均数为,求|xi-|≤0.5的概率.
相关试卷
这是一份(文科版)2024年高考数学第一轮复习全程考评特训点点练 34,共3页。试卷主要包含了3 B.0,4,8等内容,欢迎下载使用。
这是一份数学高考第一轮复习特训卷(文科)22 数列求和 ,共3页。
这是一份数学高考第一轮复习特训卷(文科)仿真模拟冲刺卷(一),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。