终身会员
搜索
    上传资料 赚现金

    重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(原卷版).docx
    • 解析
      重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版).docx
    重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(原卷版)第1页
    重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(原卷版)第2页
    重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(原卷版)第3页
    重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版)第1页
    重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版)第2页
    重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)

    展开

    这是一份重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用),文件包含重难点15七种圆锥曲线的应用解题方法核心考点讲与练-2023年高考数学一轮复习核心考点讲与练新高考专用原卷版docx、重难点15七种圆锥曲线的应用解题方法核心考点讲与练-2023年高考数学一轮复习核心考点讲与练新高考专用解析版docx等2份试卷配套教学资源,其中试卷共92页, 欢迎下载使用。


    重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)
    能力拓展

    题型一:弦长问题
    一、单选题
    1.(2022·福建厦门·模拟预测)已知抛物线的准线被圆所截得的弦长为,则(       )
    A.1 B. C.2 D.4
    2.(2022·黑龙江·哈尔滨三中模拟预测(文))己知直线l过抛物线的焦点,并且与抛物线C交于不同的两点A、B,若为线段的中点,则的值为(       )
    A.4 B.5 C.6 D.8
    3.(2022·河南郑州·三模(文))斜率为1的直线l与椭圆相交于A,B两点,则的最大值为(       )
    A.2 B. C. D.
    二、多选题
    4.(2022·河北邯郸·二模)已知P是圆O:上的动点,点Q(1,0),以P为圆心,PQ为半径作圆P,设圆P与圆O相交于A,B两点.则下列选项正确的是(       )
    A.当P点坐标为(2,0)时,圆P的面积最小
    B.直线AB过定点
    C.点Q到直线AB的距离为定值
    D.
    三、填空题
    5.(2022·江苏·模拟预测)在平面直角坐标系中,已知过抛物线焦点F的直线与抛物线相交于A,B两点,以为直径的圆分别与x轴交于异于F的P,Q两点,若,则线段的长为________.

    6.(2022·江苏泰州·模拟预测)已知抛物线,直线被抛物线C截得的弦长为8,则抛物线C的准线方程为___.
    四、解答题
    7.(2022·全国·二模(理))已知动圆M经过定点,且与圆相内切.
    (1)求动圆圆心M的轨迹C的方程;
    (2)设点T在上,过点T的两条直线分别交轨迹C于A,B和P,Q两点,且,求直线AB的斜率和直线PQ的斜率之和.





    8.(2022·陕西·西北工业大学附属中学模拟预测(理))已知椭圆:的离心率为,直线交椭圆的弦长为.
    (1)求椭圆的方程;
    (2)经过定点的直线交椭圆于两点,椭圆的右顶点为,设直线,的斜率分别为,,求证:恒为定值.









    9.(2022·内蒙古·满洲里市教研培训中心三模(文))已知圆:,圆:,圆与圆、圆外切,
    (1)求圆心的轨迹方程
    (2)若过点且斜率的直线与交与两点,线段的垂直平分线交轴与点,证明的值是定值.







    10.(2022·北京·潞河中学三模)已知椭圆的一个顶点为,离心率为.
    (1)求椭圆的方程;
    (2)设过椭圆右焦点的直线交椭圆于两点,过原点的直线交椭圆于两点.若,求证:为定值.










    题型二:面积问题
    一、单选题
    1.(2022·江苏·南京师大附中模拟预测)平面直角坐标系中,点集 ,则点集所覆盖的平面图形的面积为(       )
    A. B. C. D.
    二、多选题
    2.(2022·湖南·模拟预测)已知双曲线,的左右焦点分别为,,双曲线C上两点A,B关于坐标原点对称,点P为双曲线C右支上上一动点,记直线PA,PB的斜率分别为,,若,,则下列说法正确的是(       )
    A. B.
    C.的面积为 D.的面积为1
    三、填空题
    3.(2022·内蒙古赤峰·三模(文))已知抛物线的焦点为,过且垂直与轴的直线与相交于,两点,若(为坐标原点)的面积为,则________
    四、解答题
    4.(2022·浙江·温州中学模拟预测)已知椭圆的上、下顶点分别为,抛物线在点处的切线l交椭圆于点M,N,交椭圆的短轴于点C,直线交x轴于点D.

    (1)若点C是的中点,求p的值;
    (2)设与的面积分别为,求的最大值.
    5.(2022·浙江·效实中学模拟预测)已知分别为椭圆的左、右焦点,长轴长为,分别为椭圆的上、下顶点,且四边形的面积为.
    (1)求椭圆的方程;
    (2)若椭圆的离心率为,过点的直线与曲线交于两点,设的中点为M,两点为曲线上关于原点对称的两点,且,求四边形面积的取值范围.






    6.(2022·湖南·模拟预测)已知椭圆的左、右焦点分别为,,P为椭圆上一动点,直线与圆相切于Q点,且Q是线段的中点,三角形的面积为2.
    (1)求椭圆C的方程;
    (2)过点P(点P不在x轴上)作圆的两条切线、,切点分别为M,N,直线MN交椭圆C于点D、E两点,求三角形ODE的面积的取值范围.










    7.(2022·江苏苏州·模拟预测)已知椭圆且经过,,,中的三点,抛物线,椭圆的右焦点是抛物线的焦点.
    (1)求曲线,的方程;
    (2)点P是椭圆的点,且过点P可以作抛物线的两条切线,切点为A,B,求三角形面积的最大值.






    题型三:中点弦问题
    一、多选题
    1.(2022·山东·烟台二中模拟预测)在平面直角坐标系xOy中,过点的直线l与抛物线C:交于A,B两点,点为线段AB的中点,且,则下列结论正确的为(       )
    A.N为的外心 B.M可以为C的焦点
    C.l的斜率为 D.可以小于2
    2.(2022·全国·模拟预测)法国数学家加斯帕·蒙日被称为“画法几何创始人”、“微分几何之父”.他发现与椭圆相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,这个圆称为该椭圆的蒙日圆.若椭圆的蒙日圆为,过上的动点作的两条切线,分别与交于,两点,直线交于,两点,则(       )
    A.椭圆的离心率为
    B.面积的最大值为
    C.到的左焦点的距离的最小值为
    D.若动点在上,将直线,的斜率分别记为,,则
    二、填空题
    3.(2022·全国·模拟预测)已知双曲线E:的左、右焦点分别为、,过的直线l与双曲线的左、右两支分别交于P、Q两点,与y轴交于点C,M为线段PQ的中点.若,则双曲线E的离心率为______.
    三、解答题
    4.(2022·江苏南京·模拟预测)已知椭圆:()过点,直线:与椭圆交于,两点,且线段的中点为,为坐标原点,直线的斜率为-0.5.
    (1)求椭圆的标准方程;
    (2)当时,椭圆上是否存在,两点,使得,关于直线对称,若存在,求出,的坐标,若不存在,请说明理由.

















    5.(2022·新疆·三模(文))已知椭圆C:),O为坐标原点,若直线l与椭圆C交于A,B两点,线段AB的中点为M,直线l与直线OM的斜率乘积为.
    (1)求椭圆C的离心率;
    (2)若椭圆C经过点,求椭圆C的标准方程.







    6.(2022·全国·模拟预测)已知椭圆的离心率为,点在椭圆上.
    (1)求椭圆的标准方程;
    (2)若上存在,两点关于直线对称,且(为坐标原点),求的值.












    题型四:范围问题
    一、单选题
    1.(2022·江苏南通·模拟预测)设抛物线C:y2=4x的焦点为F,过F的直线C相交于A,B两点,则4|AF|+9|BF|的最小值为(       )
    A.26 B.25 C.20 D.18
    二、多选题
    2.(2022·江苏南通·模拟预测)在平面直角坐标系xOy中,已知F1,F2分别是椭圆的左,右焦点,点A,B是椭圆C上异于长轴端点的两点,且满足,则(       )
    A.△ABF2的周长为定值 B.AB的长度最小值为1
    C.若AB⊥AF2,则λ=3 D.λ的取值范围是[1,5]
    3.(2022·辽宁大连·二模)已知在平面直角坐标系中,,,,,,P为该平面上一动点,记直线PD,PE的斜率分别为和,且,设点P运动形成曲线F,点M,N是曲线F上位于x轴上方的点,且,则下列说法正确的有(       )
    A.动点P的轨迹方程为 B.△PAB面积的最大值为
    C.的最大值为5 D.的最小值为
    4.(2022·全国·模拟预测)已知为坐标原点,经过点且斜率为的直线与双曲线相交于不同的两点,,则(       )
    A.若时,则
    B.对任意的,存在直线使得
    C.对任意的,存在直线使得
    D.对任意的,存在直线使得





    三、解答题
    5.(2022·江苏泰州·模拟预测)已知椭圆)的左焦点为F,其离心率,过点F垂直于x轴的直线交椭圆于P,Q两点,.
    (1)求椭圆的方程;
    (2)若椭圆的下顶点为B,过点D(2,0)的直线l与椭圆相交于两个不同的点M,N,直线BM,BN的斜率分别为,求的取值范围.








    6.(2022·湖南·长沙一中模拟预测)已知双曲线的离心率为2,F为双曲线的右焦点,直线l过F与双曲线的右支交于两点,且当l垂直于x轴时,;
    (1)求双曲线的方程;
    (2)过点F且垂直于l的直线与双曲线交于两点,求的取值范围.









    7.(2022·浙江·杭州高级中学模拟预测)如图,为抛物线的焦点,直线与抛物线交于、两点,中点为,当,时,到轴的距离与到点距离相等.

    (1)求的值;
    (2)若存在正实数,使得以为直径的圆经过点,求的取值范围.

















    8.(2022·全国·华中师大一附中模拟预测)如图,已知椭圆的离心率为,直线与圆交于M,N两点,.

    (1)求椭圆E的方程;
    (2)A,B为椭圆E的上、下顶点,过点A作直线交圆O于点P,交椭圆E于点Q(P,Q位于y轴的右侧),直线BP,BQ的斜率分别记为,,试用k表示,并求当时,△面积的取值范围.

















    9.(2022·浙江省杭州学军中学模拟预测)如图,在平面直角坐标系中,已知抛物线的焦点为F,准线为l,过点F且斜率大于0的直线交抛物线C于A,B两点,过线段的中点M且与x轴平行的直线依次交直线,,l于点P,Q,N.

    (1)求证:;
    (2)若线段上的任意一点均在以点Q为圆心、线段长为半径的圆内或圆上,若,求实数的取值范围;








    题型五:定点问题
    一、多选题
    1.(2022·重庆·三模)已知抛物线的焦点为F,为C上一点,.过C的准线上一点P,作C的两条切线,其中A、B为切点.则下列判断正确的是(       )
    A. B.抛物线C的准线方程为
    C.以线段为直径的圆与C的准线相切 D.直线恒过焦点F
    2.(2022·河北沧州·模拟预测)已知抛物线C:(>0)的焦点F与圆的圆心重合,直线与C交于两点,且满足:(其中O为坐标原点且A、B均不与O重合),则(       )
    A. B.直线恒过定点
    C.A、B中点轨迹方程: D.面积的最小值为16
    二、填空题
    3.(2022·河北·模拟预测)已知抛物线的焦点为F,A,B为抛物线C上在第一象限的两点,记直线与直线的斜率分别为与,且,则直线恒过定点___________.
    4.(2022·四川遂宁·三模(理))已知抛物线:()的焦点F与圆的圆心重合,直线与C交于、两点,且满足:(其中为坐标原点且A,均不与重合),对于下列命题:
    ①,;
    ②直线恒过定点;
    ③A,中点轨迹方程:;
    ④面积的最小值为16.
    以上说法中正确的有______.
    三、解答题
    5.(2022·江西师大附中三模(理))已知椭圆的右焦点为F,上顶点为M,O为坐标原点,若的面积为,且椭圆的离心率为.

    (1)求椭圆的方程;
    (2)是否存在直线l交椭圆于P,Q两点,且F点恰为的垂心?若存在,求出直线l的方程;若不存在,说明理由.






    6.(2022·广东广州·三模)在圆上任取一点,过点作轴的垂线段为垂足,线段上一点满足.记动点的轨迹为曲线
    (1)求曲线的方程;
    (2)设为原点,曲线与轴正半轴交于点,直线与曲线交于点,与轴交于点,直线与曲线交于点,与轴交于点,若,求证:直线经过定点.













    7.(2022·重庆八中模拟预测)已知抛物线的焦点为F,不过原点的直线l交抛物线C于A,B两不同点,交x轴的正半轴于点D.
    (1)当为正三角形时,求点A的横坐标;
    (2)若,直线,且和C相切于点E;
    ①证明:直线过定点,并求出定点坐标;
    ②的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.







    8.(2022·江苏南通·模拟预测)已知F1(-,0),F2(,0)为双曲线C的焦点,点P(2,-1)在C上.
    (1)求C的方程;
    (2)点A,B在C上,直线PA,PB与y轴分别相交于M,N两点,点Q在直线AB上,若+,=0,证明:存在定点T,使得|QT|为定值.









    9.(2022·河南·模拟预测(理))已知椭圆的离心率为,C的四个顶点围成的四边形面积为.
    (1)求C的方程;
    (2)已知点,若不过点Q的动直线l与C交于A,B两点,且,证明:l过定点.




    题型六:定值问题
    一、解答题
    1.(2022·江苏·南京师大附中模拟预测)如图,已知离心率为的椭圆的左右顶点分别为、,是椭圆上异于、的一点,直线、分别交直线于、两点.直线与轴交于点,且.

    (1)求椭圆的方程;
    (2)若线段的中点为,问在轴上是否存在定点,使得当直线、的斜率、存在时,为定值?若存在,求出点的坐标及的值;若不存在,请说明理由.




    2.(2022·辽宁沈阳·三模)如图,在平面直角坐标系中,分别为等轴双曲线的左、右焦点,若点A为双曲线右支上一点,且,直线交双曲线于B点,点D为线段的中点,延长AD,BD,分别与双曲线交于P,Q两点.

    (1)若,求证:;
    (2)若直线AB,PQ的斜率都存在,且依次设为,试判断是否为定值,如果是,请求出的值;如果不是,请说明理出.





    3.(2022·安徽·合肥市第八中学模拟预测(理))已知椭圆的离心率为,且经过点.
    (1)求椭圆C的方程;
    (2)过点的直线与椭圆C相交于A,B两点,直线分别交x轴于M,N两点,点,若,求证:为定值.





    4.(2022·陕西·西北工业大学附属中学模拟预测(理))已知抛物线C:的焦点为,准线与坐标轴的交点为,、是离心率为的椭圆S的焦点.
    (1)求椭圆S的标准方程;
    (2)设过原点O的两条直线和,,与椭圆S交于A、B两点,与椭圆S交于M、N两点.求证:原点O到直线AM和到直线BN的距离相等且为定值.








    5.(2022·陕西·西北工业大学附属中学模拟预测(文))已知椭圆C:经过点,且椭圆C的离心率.
    (1)求椭圆C的方程;
    (2)经过定点的直线l交椭圆C于A,B两点,椭圆C的右顶点为P,设直线PA,PB的斜率分别为,,求证:恒为定值.








    6.(2022·江苏·南京外国语学校模拟预测)在平面直角坐标系xOy中,设椭圆的两个焦点分别为F1,F2,点P在椭圆C上,连结PF1,PF2并延长,分别交椭圆于点A,B.已知APF2的周长为,F1PF2面积最大值为4.
    (1)求椭圆C的标准方程;
    (2)当P不是椭圆的顶点时,试分析直线OP和直线AB的斜率之积是否为定值?若是,求出该定值,若不是,请说明理由.







    7.(2022·湖北·荆州中学模拟预测)设点是椭圆上一动点,、分别是椭圆的左、右焦点,射线 、分别交椭圆于两点,已知的周长为,且点在椭圆上.
    (1)求椭圆的方程;
    (2)证明:为定值.









    题型七:向量共线问题
    一、单选题
    1.(2022·贵州贵阳·二模(理))已知抛物线的准线交轴于点,过点作直线交于,两点,且,则直线的斜率是(       )
    A. B. C. D.
    2.(2022·内蒙古赤峰·模拟预测(理))已知抛物线的焦点为,过点且倾斜角为的直线与抛物线交于(位于第一象限)、两点,直线与交于点,若,则(       )
    A. B. C. D.
    二、多选题
    3.(2022·山东济南·二模)过抛物线焦点F的直线交抛物线于A,B两点(A在第一象限),M为线段AB的中点.M在抛物线的准线l上的射影为点N,则下列说法正确的是(       )
    A.的最小值为4 B.
    C.△NAB面积的最小值为6 D.若直线AB的斜率为,则
    三、填空题
    4.(2022·贵州遵义·三模(理))斜率为的直线过椭圆的焦点,交椭圆于两点,若,则该椭圆的离心率为_________.
    四、解答题
    5.(2022·江苏南京·模拟预测)已知圆:,动圆与圆外切,且与定直线相切,设动点的轨迹为.
    (1)求的方程;
    (2)若直线过点,且与交于,两点,与轴交于点,满足,(,),试探究与的关系.



    6.(2022·山东·烟台二中模拟预测)在平面直角坐标系xOy中,已知点,,设的内切圆与AC相切于点D,且,记动点C的轨迹为曲线T.
    (1)求T的方程;
    (2)设过点的直线l与T交于M,N两点,已知动点P满足,且,若,且动点Q在T上,求的最小值.







    7.(2022·山西太原·三模(理))已知椭圆过点离心率为
    (1)求椭圆C的方程;
    (2)当过点M(4,1)的动直线与椭圆C相交于不同的两点A,B时,在线段AB上取点N,满足求线段PN长的最小值.











    8.(2022·天津红桥·二模)已知椭圆:()的离心率,点、之间的距离为.
    (1)求椭圆的标准方程;
    (2)若经过点且斜率为的直线与椭圆有两个不同的交点和,则是否存在常数,使得与共线?如果存在,求的值;如果不存在,请说明理由.







    9.(2022·山东济南·二模)已知椭圆C的焦点坐标为和,且椭圆经过点.
    (1)求椭圆C的方程;
    (2)若,椭圆C上四点M,N,P,Q满足,,求直线MN的斜率.


    相关试卷

    重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)(解析版):

    这是一份重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2024年高考数学一轮复习核心考点讲与练(新高考专用)(解析版),共92页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    重难点12五种椭圆解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用):

    这是一份重难点12五种椭圆解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用),文件包含重难点12五种椭圆解题方法核心考点讲与练-2023年高考数学一轮复习核心考点讲与练新高考专用原卷版docx、重难点12五种椭圆解题方法核心考点讲与练-2023年高考数学一轮复习核心考点讲与练新高考专用解析版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。

    重难点12五种椭圆解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用):

    这是一份重难点12五种椭圆解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用),文件包含重难点12五种椭圆解题方法核心考点讲与练-2023年高考数学一轮复习核心考点讲与练新高考专用原卷版docx、重难点12五种椭圆解题方法核心考点讲与练-2023年高考数学一轮复习核心考点讲与练新高考专用解析版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        重难点15七种圆锥曲线的应用解题方法(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map