终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    人教部编版七年级上册数学专题12线段中的四种动点问题与四种数学思想专项讲练含解析答案

    立即下载
    加入资料篮
    人教部编版七年级上册数学专题12线段中的四种动点问题与四种数学思想专项讲练含解析答案第1页
    人教部编版七年级上册数学专题12线段中的四种动点问题与四种数学思想专项讲练含解析答案第2页
    人教部编版七年级上册数学专题12线段中的四种动点问题与四种数学思想专项讲练含解析答案第3页
    还剩42页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教部编版七年级上册数学专题12线段中的四种动点问题与四种数学思想专项讲练含解析答案

    展开

    这是一份人教部编版七年级上册数学专题12线段中的四种动点问题与四种数学思想专项讲练含解析答案,共45页。
    专题12�线段中的四种动点问题与四种数学思想 专项讲练
    学校:___________姓名:___________班级:___________考号:___________

    评卷人
    得分



    一、单选题
    1.已知,点C在直线 AB 上, AC=a , BC=b ,且 a≠b ,点 M是线段 AB 的中点,则线段 MC的长为(    )
    A. B. C.或 D.或
    2.把根绳子对折成一条线段,在线段取一点,使,从处把绳子剪断,若剪断后的三段绳子中最长的一段为,则绳子的原长为(    )
    A. B. C.或 D.或
    3.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从左向右移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有(  )

    A.3个 B.4个 C.5个 D.6个
    4.如图线段,点在射线上从点开始,以每秒的速度沿着射线的方向匀速运动,则时,运动时间为(    )

    A.秒 B.3秒 C.秒或秒 D.3秒或6秒

    评卷人
    得分



    二、填空题
    5.如图,数轴上有两点,点C从原点O出发,以每秒的速度在线段上运动,点D从点B出发,以每秒的速度在线段上运动.在运动过程中满足,若点M为直线上一点,且,则的值为 .

    6.如图直线l上有AB两点,,点O是线段AB上的一点,,若点C是射线AB上一点,且满足,则OC= cm.

    7.一条直线上有,,三点,,,点,分别是,的中点,则 .

    评卷人
    得分



    三、解答题
    8.如图,已知数轴上点表示的数为8,是数轴上一点,且,动点从点出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为秒:

    (1)写出数轴上点表示的数为______,点表示的数为______ (用含的代数式表示);
    (2)动点从点出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问点运动多少秒时追上点?
    (3)若为的中点,为的中点,点在运动的过程中,线段的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段的长.
    9.如图①,已知线段,点C为线段AB上的一点,点D,E分别是AC和BC的中点.

    (1)若,则DE的长为_____________;
    (2)若,求DE的长;
    (3)如图②,动点P,Q分别从A,B两点同时出发,相向而行,点P以每秒3个单位长度的速度沿线段AB向右匀速运动,点Q以点P速度的两倍沿线段AB向左匀速运动,设运动时间为t秒,问当t为多少时,P,Q之间的距离为6?
    10.已知点在线段上,,点、在直线上,点在点的左侧.若,,线段在线段上移动.

    (1)如图1,当为中点时,求的长;
    (2)点(异于,,点)在线段上,,,求的长.
    11.如图,点,在数轴上所对应的数分别为-5,7(单位长度为),是,间一点,,两点分别从点,出发,以,的速度沿直线向左运动(点在线段上,点在线段上),运动的时间为.

    (1)______.
    (2)若点,运动到任一时刻时,总有,请求出的长.
    (3)在(2)的条件下,是数轴上一点,且,求的长.
    12.如图,在直线AB上,线段,动点P从A出发,以每秒2个单位长度的速度在直线AB上运动.M为AP的中点,N为BP的中点,设点P的运动时间为t秒.

    (1)若点P在线段AB上的运动,当时, ;
    (2)若点P在射线AB上的运动,当时,求点P的运动时间t的值;
    (3)当点P在线段AB的反向延长线上运动时,线段AB、PM、PN有怎样的数量关系?请写出你的结论,并说明你的理由.
    13.已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B的左侧,C在D的左侧),且m,n满足|m-12|+(n-4)2=0.
    (1)m=  ,n=  ;
    (2)点D与点B重合时,线段CD以2个单位长度/秒的速度向左运动.
    ①如图1,点C在线段AB上,若M是线段AC的中点,N是线段BD的中点,求线段MN的长;
    ②P是直线AB上A点左侧一点,线段CD运动的同时,点F从点P出发以3个单位/秒的向右运动,点E是线段BC的中点,若点F与点C相遇1秒后与点E相遇.试探索整个运动过程中,FC-5DE是否为定值,若是,请求出该定值;若不是,请说明理由.

    14.如图一,点在线段上,图中有三条线段、和,若其中一条线段的长度是另外一条线段长度的倍,则称点是线段的“巧点”.
    (1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”)
    【问题解决】
    (2)如图二,点和在数轴上表示的数分别是和,点是线段的巧点,求点在数轴上表示的数。
    【应用拓展】
    (3)在(2)的条件下,动点从点处,以每秒个单位的速度沿向点匀速运动,同时动点从点出发,以每秒个单位的速度沿向点匀速运动,当其中一点到达中点时,两个点运动同时停止,当、、三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间的所有可能值.

    15.(1)如图1,请利用无刻度的直尺和圆规,连接,在线段上求作线段,使;

    (2)如图2,点是的中点,、分别是线段、上的点,且,.若,求线段的长.
    16.线段AB=16,C,D是线段AB上的两个动点(点C在点D的左侧),且CD=2,E为BC的中点.

    (1)如图1,当AC=4时,求DE的长.
    (2)如图2,F为AD的中点.点C,D在线段AB上移动的过程中,线段EF的长度是否会发生变化,若会,请说明理由;若不会,请求出EF的长.
    17.如图,点B在线段AC的延长线上,M、N分别是线段AC、CB的中点.

    (1)若,,求线段MN的长;
    (2)若,,求线段MN的长.
    18.如图所示.点A,B,C是数轴上的三个点,且A,B两点表示的数互为相反数,,.

    (1)点A表示的数是______;
    (2)若点P从点B出发沿着数轴以每秒2个单位的速度向左运动,则经过______秒时,点C恰好是BP的中点;
    (3)若点Q从点A出发沿着数轴以每秒1个单位的速度向右运动,线段QB的中点为M,当时,则点Q运动了多少秒?请说明理由.
    19.如图,点C是线段AB上的一点,线段AC=8m,.机器狗P从点A出发,以6m/s的速度向右运动,到达点B后立即以原来的速度返回;机械猫Q从点C出发,以2m/s的速度向右运动,设它们同时出发,运动时间为xs.当机器狗P与机械猫Q第二次相遇时,机器狗和机械猫同时停止运动.

    (1)BC=______m,AB=______m;
    (2)试通过计算说明:当x为何值时,机器狗P在点A与机械猫Q的中点处?
    (3)当x为何值时,机器狗和机械猫之间的距离PQ=2m?请直接写出x的值.
    20.如图,已知,C为线段上一点,D为的中点,E为的中点,F为的中点

    (1)如图1,若,,求的长;
    (2)若,求的值;
    (3)若,,取的中点G,的中点H,的中点P,求的长(用含a的式子表示).
    21.如图1,已知B、C在线段AD上.

    (1)图中共有 条线段;
    (2)若AB=CD.
    ①比较线段的大小:AC BD(填:“>”、“=”或“<”);
    ②如图2,若AD=20,BC=12,M是AB的中点,N是CD的中点,求MN的长度.
    22.已知线段上有两点C、D,使得,M是线段的中点,点N是线段上的点,且满足,,求的长.

    23.如图,点C在线段AB上,M、N分别是线段AC、BC的中点,

    (1)若AC=7cm,BC=5cm,求线段MN的长;
    (2)若AB=a,点C为线段AB上任意一点,你能用含a的代数式表示MN的长度吗?若能,请写出结果与过程,若不能,请说明理由;
    (3)若将(2)中“点C为线段AB上任意一点”改为“点C为直线AB上任意一点”,其余条件不变,(2)中的结论是否仍然成立?请画图并写出说明过程.
    24.已知线段,点在线段上,且.

    (1)求线段,的长;
    (2)点是线段上的动点且不与点,,重合,线段的中点为,设
    ①请用含有的代数式表示线段,的长;
    ②若三个点,,中恰有一点是其它两点所连线段的中点,则称,,三点为“共谐点”,请直接写出使得,,三点为“共谐点”的的值.
    25.如图,已知点C在线段上,M是的中点,点N在线段上,且.

    (1)若,求线段的长;
    (2)若,则________(直接写出结果);
    (3)若已点知C在线段的延长线上,M是的中点,点N在线段上,,求的长.
    26.已知A,B,C,D四点在同一条直线上,点C是线段AB的中点.
    (1)点D在线段AB上,且AB=6,,求线段CD的长度;
    (2)若点E是线段AB上一点,且AE=2BE,当时,线段CD与CE具有怎样的数量关系,请说明理由.
    27.点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.

    (1)点B表示的数为________;
    (2)若线段,则线段OM的长为________;
    (3)若线段(),求线段BM的长(用含a的式子表示).
    28.如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,,设点B运动时间为t秒().

    (1)当时,①________cm,
    ②此时线段CD的长度=_______cm;
    (2)用含有t的代数式表示运动过程中AB的长;
    (3)在运动过程中,若AB中点为E,则EC的长度是否变化?若不变,求出EC的长;若变化,请说明理由.
    29.如图,在数轴上点表示的数为,点表示的数为,点表示的数为,是最大的负整数,且,满足.点从点出发以每秒3个单位长度的速度向左运动,到达点后立刻返回到点,到达点后再返回到点并停止.

    (1)________,________,________.
    (2)点从点离开后,在点第二次到达点的过程中,经过秒钟,,求的值.
    (3)点从点出发的同时,数轴上的动点,分别从点和点同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设秒钟时,、、三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的的值.
    30.如图,数轴上的点,表示的数分别为-10和20,动点从点出发,以2个单位秒的速度沿数轴的正方向运动,点为的中点.
    (1)点出发多少秒时,;
    (2)当点在线段上运动时,求的值;
    (3)若点为的中点,请直接写出的长.

    31.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为t.

    (1)当t=1时,PD=2AC,请求出AP的长;
    (2)当t=2时,PD=2AC,请求出AP的长;
    (3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;
    (4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.
    32.(理解新知)
    如图①,点M在线段AB上,图中共有三条线段AB、AM和BM,若其中有一条线段的长度是另外一条线段长度的2倍,则称点M是线段AB的“奇妙点”,

    (1)线段的中点 这条线段的“奇妙点”(填“是”或“不是”)
    (2)(初步应用)
    如图②,若,点N是线段CD的“奇妙点”,则 ;
    (3)(解决问题)
    如图③,已知,动点P从点A出发,以速度沿AB向点B匀速移动,点从点B出发,以的速度沿BA向点A匀速移动,点P、同时出发,当其中一点到达终点时,运动停止.设移动的时间为 t,请求出 为何值时,A、P、三点中其中一点恰好是另外两点为端点的线段的“奇妙点”.

    参考答案:
    1.D
    【分析】由于点B的位置以及a、b的大小没有确定,故应分四种情况进行讨论,即可得到答案.
    【详解】由于点B的位置不能确定,故应分四种情况讨论:
    ①当a>b且点C在线段AB上时,如图1.

    ∵AC=a,BC=b,∴AB=AC+BC=a+b.
    ∵点M是AB的中点,∴AMAB=,
    ∴MC=AC﹣AM==.
    ②当a>b且点C在线段AB的延长线上时,如图2.

    ∵AC=a,BC=b,∴AB=AC-BC=a-b.
    ∵点M是AB的中点,∴AMAB=,
    ∴MC=AC﹣AM==.
    ③当a<b且点C在线段AB上时,如图3.

    ∵AC=a,BC=b,∴AB=AC+BC=a+b.
    ∵点M是AB的中点,∴AMAB=,
    ∴MC=AM﹣AC==.
    ④当a<b且点C在线段AB的方向延长线上时,如图4.

    ∵AC=a,BC=b,∴AB=BC-AC=b-a.
    ∵点M是AB的中点,∴AMAB=,
    ∴MC=AC+AM==.
    综上所述:MC的长为或(a>b)或(a<b),即MC的长为或.
    故选D.
    【点睛】本题考查了中点的定义,线段之间的和差关系,两点间的距离,掌握线段间的和差关系与分类讨论的数学思想是解题的关键.
    2.C
    【分析】由于题目中的对折没有明确对折点,所以要分A为对折点与B为对折点两种情况讨论,讨论中抓住最长线段即可解决问题.
    【详解】解:如图

    ∵,
    ∴2AP=<PB
    ①若绳子是关于A点对折,
    ∵2AP<PB
    ∴剪断后的三段绳子中最长的一段为PB=30cm,
    ∴绳子全长=2PB+2AP=24×2+×24=64cm;
    ②若绳子是关于B点对折,
    ∵AP<2PB
    ∴剪断后的三段绳子中最长的一段为2PB=24cm
    ∴PB=12 cm
    ∴AP=12×cm
    ∴绳子全长=2PB+2AP=12×2+4×2=32 cm;
    故选:C.
    【点睛】本题考查的是线段的对折与长度比较,解题中渗透了分类讨论的思想,体现思维的严密性,在今后解决类似的问题时,要防止漏解.
    3.C
    【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,由此可以得到出现报警的最多次数.
    【详解】解:根据题意可知:
    当点P经过任意一条线段中点时会发出报警,
    ∵图中共有线段AB、AC、AD、BC、BD、CD,
    ∵AD和BC的中点是同一个,
    ∴直线l上会发出警报的点P有5个.
    故选:C.
    【点睛】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.
    4.C
    【分析】根据题意可知,当PB=AB时,点P可以位于点B两侧,则通过分类讨论问题可解.
    【详解】解:由已知当PB=AB时,PB=,
    设点P运动时间为t秒,则AP=2t
    当点P在B点左侧时
    2t+=8
    解得t=,
    当点P在B点左侧时
    2t-=8
    解得t=
    所以t=或t=.
    故选:C.
    【点睛】本题考查了一元一次方程以及分类讨论的数学思想,解答时注意根据已知的线段数量关系构造方程.
    5.1或
    【分析】设点A在数轴上表示的数为a,点B在数轴上表示的数为b,设运动的时间为t秒,由OD=4AC得a与b的关系,再根据点M在直线AB的不同的位置分4种情况进行解答,①若点M在点B的右侧时,②若点M在线段BO上时,③若点M在线段OA上时,④若点M在点A的左侧时,分别表示出AM、BM、OM,由AM-BM=OM得到t、a、b之间的关系,再计算的值即可.
    【详解】设运动的时间为t秒,点M表示的数为m
    则OC=t,BD=4t,即点C在数轴上表示的数为-t,点D在数轴上表示的数为b-4t,
    ∴AC=-t-a,OD=b-4t,
    由OD=4AC得,b-4t=4(-t-a),
    即:b=-4a,
    ①若点M在点B的右侧时,如图1所示:

    由AM-BM=OM得,m-a-(m-b)=m,即:m=b-a;

    ②若点M在线段BO上时,如图2所示:

    由AM-BM=OM得,m-a-(b-m)=m,即:m=a+b;

    ③若点M在线段OA上时,如图3所示:

    由AM-BM=OM得,m-a-(b-m)=-m,即:
    ∵此时m<0,a<0,
    ∴此种情况不符合题意舍去;
    ④若点M在点A的左侧时,如图4所示:

    由AM-BM=OM得,a-m-(b-m)=-m,即:m=b-a=-5a;
    而m<0,b-a>0,
    因此,不符合题意舍去,
    综上所述,的值为1或.
    【点睛】考查数轴表示数的意义,掌握数轴上两点之间距离的计算方法是正确解答的关键,分类讨论和整体代入在解题中起到至关重要的作用.
    6.或
    【分析】根据题意可求出,.设,分类讨论①当点C在AO之间时;②当点C在OB之间时;③当点C在点B右侧时,利用x可分别表示出AC,CB的长,根据,即得出关于x的等式,解出x即可.
    【详解】∵AB=12cm,点O是线段AB上的一点,OA=2OB,
    ∴,.
    设,
    分类讨论:①当点C在AO之间时,如图,

    由图可知,,,
    ∵,
    ∴,
    解得:.
    故此时;
    ②当点C在OB之间时,如图,

    由图可知,,.
    ∴此时不成立;
    ③当点C在点B右侧时,如图,

    由图可知,,,
    ∵,
    ∴,
    解得:.
    故此时;
    综上可知OC的长为或.
    故答案为:或.
    【点睛】本题考查线段n等分点的有关计算,与线段有关的动点问题的计算.利用数形结合和分类讨论的思想是解题的关键.
    7.或
    【分析】因为直线上三点A、B、C的位置不明确,所以要分B在A,C两点之间和A在C、B两点之间两种情况,分别结合图形并根据中点的定义即可求解.
    【详解】解:根据题意由两种情况
    若B在A,C两点之间,如图:

    则,

    (cm);
    若C在A,B两点之间,如图:



    (cm),
    故答案为:13cm或5cm.
    【点睛】本题主要考查了线段中点定义、线段的和差等知识点,根据题意正确画出符合题意的图形是解答本题的关键.
    8.(1)-6,;(2)点运动7秒时追上点;(3)线段的长度不发生变化,其值为7
    【分析】(1)根据点表示的数和AB的长度即可求解;
    (2)根据题意列出方程,求解即可;
    (3)分类讨论即可:①当点在点、两点之间运动时,②当点运动到点的左侧时,根据中点的定义即可求解.
    【详解】(1)解:∵数轴上点表示的数为8,且,
    ∴点表示的数为,
    点P表示的数为,
    故答案为:-6,;
    (2)设点、同时出发,点运动时间秒追上,依题意得,

    解得,
    ∴点运动7秒时追上点;
    (3)线段的长度没有发生变化都等于7;理由如下:
    ①当点在点、两点之间运动时:


    ②当点运动到点的左侧时:


    ∴线段的长度不发生变化,其值为7.
    【点睛】本题考查数轴上的动点问题,掌握中点的定义、一元一次方程的应用是解题的关键.
    9.(1)6;(2)6;(3)或2
    【分析】(1)根据图形,由AB= 12,AC=4得出BC= 8再根据点D,E分别时AC和BC中点,得出DC,EC,再根据线段的和求出DE,
    (2)根据图形,由AB= 12,BC=m得出AC=12-m 再根据点D,E分别时AC和BC中点,得出DC,EC,再根据线段的和求出DE,
    (3)用含t的式子表示AP,BQ,再画出两种图形,根据线段的和等于AB,得到两个一元一次方程,即可求出.
    【详解】解:如图

    (1)∵AB= 12,AC=4
    ∴BC= 8
    ∵点D,E分别时AC和BC中点,
    ∴DC=2,BC=EC=4
    ∴DE=DC+CE=6
    (2)∵AB= 12, BC= m
    ∴AC=12-m
    ∵点D, E分别时 AC和BC中点
    ∴DC=6-m,BC=EC=
    ∴DE=DC+CE=6
    (3)由题意得,如图所示,

    AP=3t,BQ= 6t
    ∴AP+PQ+BQ=12或AP+ BQ- PQ= 12
    ∴3t+6+ 6t= 12或3t + 6t- 6= 12
    解得t=或t= 2
    故当t=或t= 2时,P,Q之间的距离为6.
    【点睛】本题考查了线段的中点,线段的和差倍分,解题的关键是根据题意画出图形,得出线段之间的关系式.
    10.(1)7
    (2)3或5

    【分析】(1)根据,,可求得,,根据中点的定义求出BE,由线段的和差即可得到AD的长.
    (2)点F(异于A,B,C点)在线段AB上,,,确定点F是BC的中点,即可求出AD的长.
    【详解】(1),,
    ,,
    如图1,

    为中点,


    ∴,
    ∴,
    (2)Ⅰ、当点在点的左侧,如图2,


    ∵,,
    点是的中点,
    ∴,
    ∴,
    ∴,
    ∵,故图2(b)这种情况求不出;
    Ⅱ、如图3,当点在点的右侧,


    ,,
    ∴,
    ∴,

    ∵,故图3(b)这种情况求不出;
    综上所述:的长为3或5.
    【点睛】本题考查了两点间的距离,熟知各线段之间的和、差及倍数关系是解答的关键.本题较难,需要想清楚各种情况是否存在.
    11.(1)12;(2)4cm;(3)或
    【分析】(1)由两点间的距离,即可求解;
    (2)由线段的和差关系可求解;
    (3)由题设画出图示,分两种情况根据:当点在线段上时,由AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系,当点在的延长线上时,可得.
    【详解】解:(1)∵A、B两点对应的数分别为-5,7,
    ∴线段AB的长度为:7-(-5)=12;
    故答案为:12
    (2)根据点,的运动速度知.
    因为,所以,即,
    所以.
    (3)分两种情况:
    如图,当点在线段上时,

    因为,所以.
    又因为,
    所以,所以;
    如图,当点在的延长线上时,

    综上所述,的长为或.
    【点睛】本题考查了数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.
    12.(1)
    (2)8或24
    (3),见解析

    【分析】(1)根据题中条件直接计算即可求解;
    (2)分点在线段上运动和线段的延长线上运动进行讨论,从而求解;
    (3)先将和表示出来,再求出线段、、之间的数量关系.
    【详解】(1)解:∵ M为AP的中点,,
    ∴ ,
    ∵线段,N为BP的中点,
    ∴.
    故答案是:2;
    (2)解:①当点P在线段AB上,时,如图,

    ∵,,
    ∴,解得:.
    ②当点P在线段AB的延长线上,时,如图,

    ∵,,
    ∴,解得:.
    综上所述,当时,点P的运动时间t的值为8或24.
    (3)解:当点P在线段AB的反向延长线上时,,

    ∵,,
    ∴.
    【点睛】本题主要考查了点的运动和线段之间的关系,熟练掌握几何的基础知识是解答本题的关键.
    13.(1)m=12,n= 4; (2)① MN=8,②在整个运动的过程中,FC-5 DE的值为定值,且定值为0.
    【分析】(1)由绝对值和平方的非负性,即可求出m、n的值;
    (2)①由题意,则MN=CM+CD+DN,根据线段中点的定义,即可得到答案;
    ②设PA=a,则PC=8+a,PE=10+a,然后列出方程,求出a=2,然后分情况进行分析,求出每一种的值,即可得到答案.
    【详解】解:(1)∵|m-12|+(n-4)2=0,
    ∴m-12=0,n-4=0,
    ∴m=12,n=4;
    故答案为:12;4.
    (2)由题意,①∵AB=12,CD=4,

    ∵M是线段AC的中点,N是线段BD的中点
    ∴AM=CM=AC ,DN=BN=BD
    ∴MN=CM+CD+DN
    =AC +CD+BD
    =AC +CD+BD+CD
    =(AC +CD+BD)+CD
    =(AB +CD)
    =8;
    ②如图,设PA=a,则PC=8+a,PE=10+a,

    依题意有:
    解得:a=2
    在整个运动的过程中:BD=2t,BC=4+2t,
    ∵E是线段BC的中点
    ∴CE= BE=BC=2+t;
    Ⅰ.如图1,F,C相遇,即t=2时

    F,C重合,D,E重合,则FC=0,DE=0
    ∴FC-5 DE =0;
    Ⅱ.如图2,F,C相遇前,即t

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map