终身会员
搜索
    上传资料 赚现金
    (2019)高中数学必修第二册《第1课时 直线与直线垂直、直线与平面垂直的定义及判定》学案-人教A版
    立即下载
    加入资料篮
    (2019)高中数学必修第二册《第1课时 直线与直线垂直、直线与平面垂直的定义及判定》学案-人教A版01
    (2019)高中数学必修第二册《第1课时 直线与直线垂直、直线与平面垂直的定义及判定》学案-人教A版02
    (2019)高中数学必修第二册《第1课时 直线与直线垂直、直线与平面垂直的定义及判定》学案-人教A版03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)必修 第二册8.5 空间直线、平面的平行第1课时导学案

    展开
    这是一份人教A版 (2019)必修 第二册8.5 空间直线、平面的平行第1课时导学案,共18页。

    8.6 空间直线、平面的垂直
    8.6.1 直线与直线垂直
    8.6.2 直线与平面垂直
    第1课时 直线与直线垂直、直线与平面垂直的定义及判定

    考点
    学习目标
    核心素养
    异面直线所成的角
    会用两条异面直线所成角的定义,找出或作出异面直线
    所成的角,会在三角形中求简单的异面直线所成的角
    直观想象、逻辑推理、
    数学运算
    直线与平面垂直的定义
    理解并掌握直线与平面垂直的定义,明确定义中
    “任意”两字的重要性
    直观想象
    直线与平面垂直
    的判定定理
    掌握直线与平面垂直的判定定理,并能解决有关
    线面垂直的问题
    直观想象、逻辑推理
    问题导学
    预习教材P146-P150的内容,思考以下问题:
    1.异面直线所成的角的定义是什么?
    2.异面直线所成的角的范围是什么?
    3.异面直线垂直的定理是什么?
    4.直线与平面垂直的定义是什么?
    5.直线与平面垂直的判定定理是什么?

    1.异面直线所成的角
    (1)定义:已知两条异面直线a,b,经过空间任一点O分别作直线a′∥a,b′∥b,把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角).
    (2)垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.直线a与直线b垂直,记作a⊥b.
    (3)范围:设θ为异面直线a与b所成的角,则0°<θ≤90°.
    ■[名师点拨]                                     
    当两条直线a,b相互平行时,规定它们所成的角为0°.所以空间两条直线所成角α的取值范围是0°≤α≤90°.注意与异面直线所成的角的范围的区别.
                                        
    2.直线与平面垂直
    定义
    一般地,如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直
    记法
    l⊥α
    有关
    概念
    直线l叫做平面α的垂线,平面α叫做直线l的垂面.它们唯一的公共点P叫做垂足
    图示
    及画法


    画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直
    ■名师点拨                                     
    (1)直线与平面垂直是直线与平面相交的特殊情形.
    (2)注意定义中“任意一条直线”与“所有直线”等同但不可说成“无数条直线”.
                                        
    3.直线与平面垂直的判定定理
    文字
    语言
    如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直
    图形
    语言

    符号
    语言
    l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l⊥α
    ■名师点拨                                     
    判定定理条件中的“两条相交直线”是关键性词语,此处强调“相交”,若两条直线平行,则直线与平面不一定垂直.
                                        

    判断(正确的打“√”,错误的打“×”)
    (1)异面直线a,b所成角的范围为[0°,90°].(  )
    (2)如果一条直线与一个平面内无数条直线都垂直,那么这条直线与这个平面垂直.(  )
    (3)如果一条直线与一个平面内所有直线都垂直,那么这条直线与这个平面垂直.(  )
    答案:(1)× (2)× (3)√
    直线l与平面α内的两条直线都垂直,则直线l与平面α的位置关系是(  )
    A.平行          .垂直
    C.在平面α内 .无法确定
    答案:D
    已知直线a∥直线b,b⊥平面α,则(  )
    A.a∥α .a⊂α
    C.a⊥α .a是α的斜线
    答案:C
    在正方体ABCD­A1B1C1D1中,AC与BD相交于点O,则直线OB1与A1C1所成角的度数为________.

    解析:连接AB1,B1C,因为AC∥A1C1,所以∠B1OC(或其补角)是异面直线OB1与A1C1所成的角.
    又因为AB1=B1C,O为AC的中点,所以B1O⊥AC,
    故∠B1OC=90°,所以OB1与A1C1所成的角的大小为90°.
    答案:90°


            异面直线所成的角
     如图,在正方体ABCD­EFGH中,O为侧面ADHE的中心.

    求:(1)BE与CG所成的角;
    (2)FO与BD所成的角.
    【解】 (1)如图,因为CG∥BF.
    所以∠EBF(或其补角)为异面直线BE与CG所成的角,
    又在△BEF中,∠EBF=45°,所以BE与CG所成的角为45°.
    (2)连接FH,因为HD∥EA,EA∥FB,所以HD∥FB,又HD=FB,所以四边形HFBD为平行四边形.
    所以HF∥BD,所以∠HFO(或其补角)为异面直线FO与BD所成的角.
    连接HA,AF,易得FH=HA=AF,
    所以△AFH为等边三角形,
    又知O为AH的中点,
    所以∠HFO=30°,即FO与BD所成的角为30°.

    1.[变条件]在本例正方体中,若P是平面EFGH的中心,其他条件不变,求OP和CD所成的角.
    解:连接EG,HF,则P为HF的中点,连接AF,AH,OP∥AF,又CD∥AB,
    所以∠BAF(或其补角)为异面直线OP与CD所成的角,由于△ABF是等腰直角三角形,所以∠BAF=45°,故OP与CD所成的角为45°.
    2.[变条件]在本例正方体中,若M,N分别是BF,CG的中点,且AG和BN所成的角为39.2°,求AM和BN所成的角.
    解:连接MG,因为BCGF是正方形,所以BFCG,因为M,N分别是BF,CG的中点,所以BMNG,所以四边形BNGM是平行四边形,所以BN∥MG,所以∠AGM(或其补角)是异面直线AG和BN所成的角,∠AMG(或其补角)是异面直线AM和BN所成的角,因为AM=MG,所以∠AGM=∠MAG=39.2°,所以∠AMG=101.6°,所以AM和BN所成的角为78.4°.

    求异面直线所成的角的步骤
    (1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.
    (2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.
    (3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.
    [提醒] 求异面直线所成的角,通常把异面直线平移到同一个三角形中去,通过解三角形求得,但要注意异面直线所成的角θ的范围是0°<θ≤90°. 
     如图所示,在三棱锥A­BCD中,AB=CD,AB⊥CD,E,F分别为BC,AD的中点,求EF与AB所成的角.
    解:如图所示,取BD的中点G,连接EG,FG.
    因为E,F分别为BC,AD的中点,AB=CD,
    所以EG∥CD,GF∥AB,
    且EG=CD,GF=AB.
    所以∠GFE(或其补角)就是异面直线EF与AB所成的角,EG=GF.
    因为AB⊥CD,所以EG⊥GF.
    所以∠EGF=90°.
    所以△EFG为等腰直角三角形.
    所以∠GFE=45°,
    即EF与AB所成的角为45°.

            直线与平面垂直的定义
     (1)直线l⊥平面α,直线m⊂α,则l与m不可能(  )
    A.平行           .相交
    C.异面 .垂直
    (2)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是(  )
    A.若l⊥m,m⊂α,则l⊥α B.若l⊥α,l∥m,则m⊥α
    C.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m
    【解析】 (1)因为直线l⊥平面α,所以l与α相交.
    又因为m⊂α,所以l与m相交或异面.
    由直线与平面垂直的定义,可知l⊥m.
    故l与m不可能平行.
    (2)对于A,直线l⊥m,m并不代表平面α内任意一条直线,所以不能判定线面垂直;对于B,因为l⊥α,则l垂直于α内任意一条直线,又l∥m,由异面直线所成角的定义知,m与平面α内任意一条直线所成的角都是90°,即m⊥α,故B正确;对于C,也有可能是l,m异面;对于D,l,m还可能相交或异面.
    【答案】 (1)A (2)B

    对线面垂直定义的理解
    (1)直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.
    (2)由定义可得线面垂直⇒线线垂直,即若a⊥α,b⊂α,则a⊥b. 
     下列命题中,正确的序号是________.
    ①若直线l与平面α内的一条直线垂直,则l⊥α;
    ②若直线l不垂直于平面α,则α内没有与l垂直的直线;
    ③若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;
    ④若平面α内有一条直线与直线l不垂直,则直线l与平面α不垂直.
    解析:当l与α内的一条直线垂直时,不能保证l与平面α垂直,所以①不正确;当l与α不垂直时,l可能与α内的无数条平行直线垂直,所以②不正确,③正确.根据线面垂直的定义,若l⊥α,则l与α内的所有直线都垂直,所以④正确.
    答案:③④

            直线与平面垂直的判定
     如图,PA⊥平面ABCD,底面ABCD为矩形,AE⊥PB于点E,AF⊥PC于点F.
    (1)求证:PC⊥平面AEF;
    (2)设平面AEF交PD于点G,求证:AG⊥PD.
    【证明】 (1)因为PA⊥平面ABCD,BC⊂平面ABCD,所以PA⊥BC.
    又AB⊥BC,PA∩AB=A,
    所以BC⊥平面PAB,AE⊂平面PAB,
    所以AE⊥BC.又AE⊥PB,PB∩BC=B,
    所以AE⊥平面PBC,PC⊂平面PBC,
    所以AE⊥PC.
    又因为PC⊥AF,AE∩AF=A,
    所以PC⊥平面AEF.
    (2)由(1)知PC⊥平面AEF,又AG⊂平面AEF,
    所以PC⊥AG,
    同理CD⊥平面PAD,AG⊂平面PAD,
    所以CD⊥AG,又PC∩CD=C,
    所以AG⊥平面PCD,PD⊂平面PCD,
    所以AG⊥PD.

    1.[变条件]在本例中,底面ABCD是菱形,H是线段AC上任意一点,其他条件不变,求证:BD⊥FH.
    证明:因为四边形ABCD是菱形,所以BD⊥AC,
    又PA⊥平面ABCD,
    BD⊂平面ABCD,
    所以BD⊥PA,
    因为PA∩AC=A,
    所以BD⊥平面PAC,又FH⊂平面PAC,
    所以BD⊥FH.
    2.[变条件]若本例中PA=AD,G是PD的中点,其他条件不变,求证:PC⊥平面AFG.
    证明:因为PA⊥平面ABCD,DC⊂平面ABCD,所以DC⊥PA,
    又因为ABCD是矩形,所以DC⊥AD,又PA∩AD=A,
    所以DC⊥平面PAD,又AG⊂平面PAD,
    所以AG⊥DC,
    因为PA=AD,G是PD的中点,
    所以AG⊥PD,又DC∩PD=D,
    所以AG⊥平面PCD,所以PC⊥AG,
    又因为PC⊥AF,AG∩AF=A,
    所以PC⊥平面AFG.
    3.[变条件]本例中的条件“AE⊥PB于点E,AF⊥PC于点F”,改为“E,F分别是AB,PC的中点,PA=AD”,其他条件不变,求证:EF⊥平面PCD.
    证明:取PD的中点G,连接AG,FG.
    因为G,F分别是PD,PC的中点,
    所以GFCD,又AECD,所以GFAE,
    所以四边形AEFG是平行四边形,所以AG∥EF.
    因为PA=AD,G是PD的中点,
    所以AG⊥PD,所以EF⊥PD,
    易知CD⊥平面PAD,AG⊂平面PAD,
    所以CD⊥AG,所以EF⊥CD.
    因为PD∩CD=D,所以EF⊥平面PCD.

    (1)线线垂直和线面垂直的相互转化

    (2)证明线面垂直的方法
    ①线面垂直的定义.
    ②线面垂直的判定定理.
    ③如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.
    ④如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.
    [提醒] 要证明两条直线垂直(无论它们是异面还是共面),通常是证明其中的一条直线垂直于另一条直线所在的一个平面. 
     如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.
    (1)求证:AN⊥平面PBM;
    (2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.
    证明:(1)因为AB为⊙O的直径,
    所以AM⊥BM.又PA⊥平面ABM,所以PA⊥BM.
    又因为PA∩AM=A,所以BM⊥平面PAM.
    又AN⊂平面PAM,所以BM⊥AN.
    又AN⊥PM,且BM∩PM=M,
    所以AN⊥平面PBM.
    (2)由(1)知AN⊥平面PBM,
    PB⊂平面PBM,所以AN⊥PB.
    又因为AQ⊥PB,AN∩AQ=A,
    所以PB⊥平面ANQ.
    又NQ⊂平面ANQ,所以NQ⊥PB.

    1.若直线a⊥平面α,b∥α,则a与b的关系是(  )
    A.a⊥b,且a与b相交
    B.a⊥b,且a与b不相交
    C.a⊥b
    D.a与b不一定垂直
    解析:选C.过直线b作一个平面β,使得β∩α=c,则b∥c.因为直线a⊥平面α,c⊂α,所以a⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直.
    2.在正方体ABCD­A1B1C1D1中,与AD1垂直的平面是(  )

    A.平面DD1C1C         .平面A1DB1
    C.平面A1B1C1D1 .平面A1DB
    解析:选B.因为AD1⊥A1D,AD1⊥A1B1,且A1D∩A1B1=A1,所以AD1⊥平面A1DB1.
    3.空间四边形的四边相等,那么它的对角线(  )
    A.相交且垂直 .不相交也不垂直
    C.相交不垂直 .不相交但垂直
    解析:选D.如图,空间四边形ABCD,假设AC与BD相交,则它们共面α,从而四点A,B,C,D都在α内,这与ABCD为空间四边形矛盾,所以AC与BD不相交;取BD的中点O,连接OA与OC,因为AB=AD=DC=BC,所以AO⊥BD,OC⊥BD,从而可知BD⊥平面AOC,故AC⊥BD.
    4.已知a,b是一对异面直线,而且a平行于△ABC的边AB所在的直线,b平行于边AC所在的直线,若∠BAC=120°,则直线a,b所成的角为________.
    解析:由a∥AB,b∥AC,∠BAC=120°,知异面直线a,b所成的角为∠BAC的补角,所以直线a,b所成的角为60°.
    答案:60°

    [A 基础达标]
    1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是(  )
    A.α∥β,且m⊂α         .m∥n,且n⊥β
    C.m⊥n,且n⊂β .m⊥n,且n∥β
    解析:选B.A中,由α∥β,且m⊂α,知m∥β;B中,由n⊥β,知n垂直于平面β内的任意直线,再由m∥n,知m也垂直于β内的任意直线,所以m⊥β,B符合题意;C,D中,m⊂β或m∥β或m与β相交,不符合题意.故选B.
    2.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是(  )
    A.b⊥β .b∥β
    C.b⊂β .b⊂β或b∥β
    解析:选A.因为a⊥α,a∥b,所以b⊥α.又α∥β,所以b⊥β.
    3.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q分别为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是(  )


    解析:选D.对于A,易证AB⊥MN,AB⊥NQ,即可得直线AB⊥平面MNQ;对于B,易证AB⊥MN,AB⊥NQ,即可得直线AB⊥平面MNQ;对于C,易证AB⊥NQ,AB⊥MQ,即可得直线AB⊥平面MNQ;对于D,由图可得MN与直线AB相交且不垂直,故直线AB与平面MNQ不垂直.故选D.
    4.如图,P为△ABC所在平面α外一点,PB⊥α,PC⊥AC,则△ABC的形状为(  )
    A.锐角三角形
    B.直角三角形
    C.钝角三角形
    D.不确定
    解析:选B.由PB⊥α,AC⊂α得PB⊥AC,
    又AC⊥PC,PC∩PB=P,
    所以AC⊥平面PBC,AC⊥BC.故选B.
    5.在正方体ABCD­A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总保持AP⊥BD1,则动点P的轨迹是 (  )
    A.线段B1C
    B.线段BC1
    C.BB1中点与CC1中点连成的线段
    D.BC中点与B1C1中点连成的线段
    解析:选A.如图,由于BD1⊥平面AB1C,故点P一定位于线段B1C上.

    6.如图,在正方形ABCD­A1B1C1D1中,AC与BC1所成角的大小是______.
    解析:连接AD1,则AD1∥BC1.
    所以∠CAD1(或其补角)就是AC与BC1所成的角,连接CD1,在正方体ABCD­A1B1C1D1中,AC=AD1=CD1,
    所以∠CAD1=60°,
    即AC与BC1所成的角为60°.
    答案:60°
    7.如图,∠BCA=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中:
    (1)与PC垂直的直线有__________________;
    (2)与AP垂直的直线有__________________.

    解析:(1)因为PC⊥平面ABC,AB,AC,BC⊂平面ABC.所以PC⊥AB,PC⊥AC,PC⊥BC.
    (2)∠BCA=90°即BC⊥AC,又BC⊥PC,
    AC∩PC=C,所以BC⊥平面PAC,因为AP⊂平面PAC,所以BC⊥AP.
    答案:(1)AB,AC,BC (2)BC
    8.如图所示,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1,若BC边上存在点Q,使得PQ⊥QD,则a的最小值为________.
    解析:因为PA⊥平面ABCD,所以PA⊥QD.
    若BC边上存在一点Q,使得QD⊥PQ,PA∩PQ=P,
    则有QD⊥平面PAQ,从而QD⊥AQ.
    在矩形ABCD中,当AD=a<2时,直线BC与以AD为直径的圆相离,故不存在点Q,使PQ⊥DQ.
    所以当a≥2时,才存在点Q,使得PQ⊥QD.所以a的最小值为2.
    答案:2
    9.如图,在直三棱柱ABC­A1B1C1中,∠BAC=90°,AB=AC,D是BC的中点,点E在棱BB1上运动.证明:AD⊥C1E.
    证明:因为AB=AC,D是BC的中点,
    所以AD⊥BC.①
    又在直三棱柱ABC­A1B1C1中,BB1⊥平面ABC,
    而AD⊂平面ABC,所以AD⊥BB1.②
    由①②得AD⊥平面BB1C1C.
    由点E在棱BB1上运动,得C1E⊂平面BB1C1C,
    所以AD⊥C1E.
    10.如图所示,等腰直角三角形ABC中,∠BAC=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点,求异面直线BE与CD所成角的余弦值.

    解:取AC的中点F,连接EF,BF,
    在△ACD中,E,F分别是AD,AC的中点,

    所以EF∥CD,
    所以∠BEF(或其补角)即为所求的异面直线BE与CD所成的角.
    在Rt△ABC中,BC=,AB=AC,
    所以AB=AC=1,
    在Rt△EAB中,AB=1,AE=AD=,
    所以BE=.
    在Rt△AEF中,AF=AC=,AE=,
    所以EF=.
    在Rt△ABF中,AB=1,AF=,所以BF=.
    在等腰三角形EBF中,cos∠FEB===,
    所以异面直线BE与CD所成角的余弦值为.
    [B 能力提升]
    11.已知异面直线a与b所成的角为50°,P为空间一定点,则过点P且与a,b所成的角都是30°的直线有且仅有(  )
    A.1条          B.2条
    C.3条 D.4条
    解析:选B.过空间一点P,作a′∥a,b′∥b.由a′、b′两交线确定平面α,a′与b′的夹角为50°,则过角的平分线与直线a′、b′所在的平面α垂直的平面上,角平分线的两侧各有一条直线与a′、b′成30°的角,即与a、b成30°的角且过点P的直线有两条.
    在a′、b′相交另一个130°的角部分内不存在与a′、b′成30°角的直线.故应选B.
    12.(2018·高考全国卷Ⅱ)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为(  )
    A. B.
    C. D.
    解析:选C.如图,连接BD1,交DB1于O,取AB的中点M,连接DM,OM,易知O为BD1的中点,所以AD1∥OM,则∠MOD为异面直线AD1与DB1所成角.因为在长方体ABCD­A1B1C1D1中,AB=BC=1,AA1=,AD1==2,DM==,DB1==,所以OM=AD1=1,OD=DB1=,于是在△DMO中,由余弦定理,得
    cos∠MOD==,即异面直线AD1与DB1所成角的余弦值为,故选C.
    13.如图,在矩形ABCD中,AB=8,BC=4,E为DC边的中点,沿AE将△ADE折起,在折起过程中,下列结论正确的有(  )

    ①ED⊥平面ACD;②CD⊥平面BED;③BD⊥平面ACD;④AD⊥平面BED.
    A.1个 B.2个
    C.3个 D.4个
    解析:选A.因为在矩形ABCD中,AB=8,BC=4,E为DC边的中点,
    所以在折起过程中,D点在平面ABCE上的投影如图.

    因为DE与AC所成角不能为直角,
    所以DE不会垂直于平面ACD,故①错误;
    只有D点投影位于Q2位置时,即平面AED与平面AEB重合时,
    才有BE⊥CD,此时CD不垂直于平面AECB,
    故CD与平面BED不垂直,故②错误;
    BD与AC所成角不能为直角,
    所以BD不能垂直于平面ACD,故③错误;
    因为AD⊥ED,并且在折起过程中,有AD⊥BD,
    所以存在一个位置使AD⊥BE,
    所以在折起过程中有AD⊥平面BED,故④正确.故选A.
    14.如图,在多面体ABCDEF中,已知四边形ABCD是边长为2的正方形,△BCF为正三角形,G,H分别为BC,EF的中点,EF=4且EF∥AB,EF⊥FB.

    (1)求证:GH∥平面EAD;
    (2)求证:FG⊥平面ABCD.
    证明:(1)如图,取AD的中点M,连接EM,GM.

    因为EF∥AB,M,G分别为AD,BC的中点,所以MG∥EF.
    因为H为EF的中点,EF=4,AB=2,
    所以EH=AB=MG,所以四边形EMGH为平行四边形,所以GH∥EM,
    又因为GH⊄平面EAD,EM⊂平面EAD,
    所以GH∥平面EAD.
    (2)因为EF⊥FB,EF∥AB,所以AB⊥FB.
    在正方形ABCD中,AB⊥BC,所以AB⊥平面FBC.
    又FG⊂平面FBC,所以AB⊥FG.
    在正三角形FBC中,FG⊥BC,所以FG⊥平面ABCD.
    [C 拓展探究]
    15.如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.

    (1)求证:DE∥平面A1CB;
    (2)求证:A1F⊥BE;
    (3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
    解:(1)证明:因为D,E分别为AC,AB的中点,
    所以DE∥BC.
    又因为DE⊄平面A1CB,BC⊂平面A1CB,
    所以DE∥平面A1CB.
    (2)证明:由已知得AC⊥BC且DE∥BC,
    所以DE⊥AC.
    因为DE⊥A1D,DE⊥CD,所以DE⊥平面A1DC.
    而A1F⊂平面A1DC,所以DE⊥A1F.
    又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE.
    所以A1F⊥BE.
    (3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:
    如图,分别取A1C,A1B的中点P,Q,
    则PQ∥BC.
    又因为DE∥BC,所以DE∥PQ.
    所以平面DEQ即为平面DEQP.
    由(2)知,DE⊥平面A1DC,所以DE⊥A1C.
    又因为P是等腰△DA1C底边A1C的中点,
    所以A1C⊥DP.又DP∩DE=D,
    所以A1C⊥平面DEQP.即A1C⊥平面DEQ.
    故线段A1B上存在点Q,使得A1C⊥平面DEQ.
    相关学案

    高中数学人教A版 (2019)必修 第二册8.5 空间直线、平面的平行第2课时导学案: 这是一份高中数学人教A版 (2019)必修 第二册8.5 空间直线、平面的平行第2课时导学案,共17页。

    高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直第1课时学案及答案: 这是一份高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直第1课时学案及答案,共10页。

    高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直第1课时学案设计: 这是一份高中数学人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直第1课时学案设计

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map