所属成套资源:2024年高考数学第一轮复习试卷
2024年数学高考大一轮复习第八章 立体几何
展开
这是一份2024年数学高考大一轮复习第八章 立体几何,文件包含第2节空间几何体的表面积和体积doc、第5节直线平面垂直的判定与性质doc、第3节空间点直线平面之间的位置关系doc、第4节直线平面平行的判定与性质doc、第1节空间几何体的结构三视图和直观图doc等5份试卷配套教学资源,其中试卷共112页, 欢迎下载使用。
第4节 直线、平面平行的判定与性质
考试要求 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.
1.直线与平面平行
(1)直线与平面平行的定义
直线l与平面α没有公共点,则称直线l与平面α平行.
(2)判定定理与性质定理
文字语言
图形表示
符号表示
判定定理
如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行
a⊄α,
b⊂α,
a∥b⇒
a∥α
性质定理
一条直线和一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.
a∥α,
a⊂β,
α∩β=b⇒a∥b
2.平面与平面平行
(1)平面与平面平行的定义
没有公共点的两个平面叫做平行平面.
(2)判定定理与性质定理
文字语言
图形表示
符号表示
判定定理
如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行
a⊂β,
b⊂β,
a∩b=P,
a∥α,b∥α⇒α∥β
性质
两个平面平行,则其中一个平面内的直线平行于另一个平面
α∥β,a⊂α⇒a∥β
性质定理
两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行
α∥β,α∩γ=a,β∩γ=b⇒a∥b
1.平行关系中的三个重要结论
(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
(3)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.
2.三种平行关系的转化
1.思考辨析(在括号内打“√”或“×”)
(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.( )
(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( )
(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( )
(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( )
答案 (1)× (2)× (3)× (4)√
解析 (1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.
(2)若a∥α,P∈α,则过点P且平行于a的直线只有一条,故(2)错误.
(3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误.
2.下列说法中,与“直线a∥平面α”等价的是( )
A.直线a上有无数个点不在平面α内
B.直线a与平面α内的所有直线平行
C.直线a与平面α内无数条直线不相交
D.直线a与平面α内的任意一条直线都不相交
答案 D
解析 因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交,故选D.
3.(2022·昆明诊断)设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案 B
解析 根据m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;
反之,α∥β,m⊂α,所以m和β没有公共点,所以m∥β,即由α∥β能得到m∥β.
所以“m∥β”是“α∥β”的必要不充分条件.
4.(2021·太原质检)平面α∥平面β的一个充分条件是( )
A.存在一条直线a,a∥α,a∥β
B.存在一条直线a,a⊂α,a∥β
C.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α
D.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α
答案 D
解析 若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故排除A;
若α∩β=l,a⊂α,a∥l,则a∥β,故排除B;
若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C;
故选D.
5.在正方体ABCD-A1B1C1D1中,下列结论正确的是________(填序号).
①AD1∥BC1;
②平面AB1D1∥平面BDC1;
③AD1∥DC1;
④AD1∥平面BDC1.
答案 ①②④
解析 如图,
因为AB綉C1D1,
所以四边形AD1C1B为平行四边形.
故AD1∥BC1,从而①正确;
易证BD∥B1D1,AB1∥DC1,
又AB1∩B1D1=B1,BD∩DC1=D,
故平面AB1D1∥平面BDC1,从而②正确;
由图易知AD1与DC1异面,故③错误;
因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,
所以AD1∥平面BDC1,故④正确.
6.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.
答案 平行四边形
解析 ∵平面ABFE∥平面DCGH,
又平面EFGH∩平面ABFE=EF,
平面EFGH∩平面DCGH=HG,
∴EF∥HG.同理EH∥FG,
∴四边形EFGH是平行四边形.
考点一 直线与平面平行的判定与性质
角度1 直线与平面平行的判定
例1 如图所示,正方形ABCD与正方形ABEF所在的平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.
证明 法一 如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN.
∵正方形ABCD和正方形ABEF有公共边AB.
又AP=DQ,∴PE=QB,
又PM∥AB∥QN,
∴===,∴=.
又AB綉DC,∴PM綉QN,
∴四边形PMNQ为平行四边形,
∴PQ∥MN.
又MN⊂平面BCE,PQ⊄平面BCE,
∴PQ∥平面BCE.
法二 如图,在平面ABEF内,过点P作PM∥BE交AB于点M,连接QM.
则PM∥平面BCE,
∵PM∥BE,
∴=,又AE=BD,AP=DQ,
∴PE=BQ,∴=,∴=,
∴MQ∥AD,又AD∥BC,∴MQ∥BC,
∴MQ∥平面BCE,又PM∩MQ=M,
∴平面PMQ∥平面BCE,又PQ⊂平面PMQ,∴PQ∥平面BCE.
角度2 直线与平面平行的性质
例2 (2022·许昌质检)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,∠DAB=90°,AB=BC=PA=AD=2,E为PB的中点,F是PC上的点.
(1)若EF∥平面PAD,证明:F为PC的中点;
(2)求点C到平面PBD的距离.
(1)证明 因为BC∥AD,BC⊄平面PAD,AD⊂平面PAD,
所以BC∥平面PAD.
因为P∈平面PBC,P∈平面PAD,所以可设平面PBC∩平面PAD=PM,
又因为BC⊂平面PBC,所以BC∥PM,
因为EF∥平面PAD,EF⊂平面PBC,
所以EF∥PM,从而得EF∥BC.
因为E为PB的中点,所以F为PC的中点.
(2)解 因为PA⊥底面ABCD,∠DAB=90°,AB=BC=PA=AD=2,
所以PB==2,PD==2,
BD==2,
所以S△DPB=PB·=6.
设点C到平面PBD的距离为d,
由VC-PBD=VP-BCD,得S△DPB·d=S△BCD·PA=××BC×AB×PA,
则6d=×2×2×2,解得d=.
感悟提升 1.判断或证明线面平行的常用方法
(1)利用线面平行的定义(无公共点).
(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).
(3)利用面面平行的性质(α∥β,a⊂α⇒a∥β).
(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).
2.应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.
训练1 如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.
(1)求证:AM∥平面BDE;
(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.
(1)证明 如图,记AC与BD的交点为O,连接OE.
因为O,M分别为AC,EF的中点,四边形ACEF是矩形,
所以四边形AOEM是平行四边形,
所以AM∥OE.
又因为OE⊂平面BDE,AM⊄平面BDE,
所以AM∥平面BDE.
(2)解 l∥m,证明如下:
由(1)知AM∥平面BDE,
又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,
同理,AM∥平面BDE,
又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.
考点二 平面与平面平行的判定与性质
例3 如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.
(1)证明:平面A1BD∥平面CD1B1;
(2)若平面ABCD∩平面B1D1C=l,证明:B1D1∥l.
证明 (1)由题设知BB1綉DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.
又BD⊄平面CD1B1,B1D1⊂平面CD1B1,
所以BD∥平面CD1B1.
因为A1D1綉B1C1綉BC,
所以四边形A1BCD1是平行四边形,
所以A1B∥D1C.
又A1B⊄平面CD1B1,D1C⊂平面CD1B1,
所以A1B∥平面CD1B1.
又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.
(2)由(1)知平面A1BD∥平面CD1B1,
又平面ABCD∩平面B1D1C=l,
平面ABCD∩平面A1BD=BD,
所以直线l∥直线BD,
在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,
所以B1D1∥BD,所以B1D1∥l.
感悟提升 1.判定面面平行的主要方法
(1)利用面面平行的判定定理.
(2)线面垂直的性质(垂直于同一直线的两平面平行).
2.面面平行条件的应用
(1)两平面平行,分别构造与之相交的第三个平面,交线平行.
(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.
提醒 利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.
训练2 如图,在三棱柱ABC-A1B1C1中,E,F,G分别为B1C1,A1B1,AB的中点.
(1)求证:平面A1C1G∥平面BEF;
(2)若平面A1C1G∩BC=H,求证:H为BC的中点.
证明 (1)∵E,F分别为B1C1,A1B1的中点,∴EF∥A1C1,
∵A1C1⊂平面A1C1G,EF⊄平面A1C1G,
∴EF∥平面A1C1G,
又F,G分别为A1B1,AB的中点,ABB1A1为平行四边形,
∴A1F=BG,且A1F∥BG,
∴四边形A1GBF为平行四边形,
则BF∥A1G,
∵A1G⊂平面A1C1G,BF⊄平面A1C1G,
∴BF∥平面A1C1G,
又EF∩BF=F,EF,BF⊂平面BEF,
∴平面A1C1G∥平面BEF.
(2)∵平面ABC∥平面A1B1C1,平面A1C1G∩平面A1B1C1=A1C1,平面A1C1G与平面ABC有公共点G,则有经过G的直线,设交BC于点H,则A1C1∥GH,得GH∥AC,
∵G为AB的中点,∴H为BC的中点.
考点三 平行关系的综合应用
例4 如图,在正方体ABCD-A1B1C1D1中,P,Q分别为对角线BD,CD1上的点,且==.
(1)求证:PQ∥平面A1D1DA;
(2)若R是AB上的点,的值为多少时,能使平面PQR∥平面A1D1DA?请给出证明.
(1)证明 连接CP并延长与DA的延长线交于M点,如图,连接MD1,
因为四边形ABCD为正方形,
所以BC∥AD,
故△PBC∽△PDM,所以==,
又因为==,所以==,
所以PQ∥MD1.
又MD1⊂平面A1D1DA,PQ⊄平面A1D1DA,
故PQ∥平面A1D1DA.
(2)解 当的值为时,能使平面PQR∥平面A1D1DA.
如图,证明:因为=,
即=,故=.所以PR∥DA.
又DA⊂平面A1D1DA,PR⊄平面A1D1DA,
所以PR∥平面A1D1DA,
又PQ∥平面A1D1DA,PQ∩PR=P,PQ,PR⊂平面PQR,
所以平面PRQ∥平面A1D1DA.
感悟提升 三种平行关系的转化
训练3 如图,四边形ABCD与四边形ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:
(1)BE∥平面DMF;
(2)平面BDE∥平面MNG.
证明 (1)如图,连接AE,则AE必过DF与GN的交点O,因为四边形ADEF为平行四边形,所以O为AE的中点.
连接MO,则MO为△ABE的中位线,
所以BE∥MO,
又BE⊄平面DMF,MO⊂平面DMF,
所以BE∥平面DMF.
(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥NG,
又DE⊄平面MNG,NG⊂平面MNG,
所以DE∥平面MNG.
因为M为AB的中点,N为AD的中点,
所以MN为△ABD的中位线,
所以BD∥MN,
又BD⊄平面MNG,MN⊂平面MNG,
所以BD∥平面MNG,
又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.
1.设α,β为两个平面,则α∥β的充要条件是( )
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
答案 B
解析 若α∥β,则α内有无数条直线与β平行,当α内无数条直线互相平行时,α与β可能相交;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一个平面,则α与β可以平行也可以相交,故A,C,D中条件均不是α∥β的充要条件.根据两平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之也成立.因此B中条件是α∥β的充要条件.
2.下列命题中正确的是( )
A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面
B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行
C.平行于同一条直线的两个平面平行
D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α
答案 D
解析 A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知b∥α,正确.
3.如果AB,BC,CD是不在同一平面内的三条线段,则经过它们中点的平面和直线AC的位置关系是( )
A.平行 B.相交
C.AC在此平面内 D.平行或相交
答案 A
解析 把这三条线段放在正方体内可得如图,显然AC∥EF,AC⊄平面EFG,
∵EF⊂平面EFG,
故AC∥平面EFG.
4.(2021·兰州诊断)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是( )
A.异面 B.平行
C.相交 D.以上均有可能
答案 B
解析 在三棱柱ABC-A1B1C1中,AB∥A1B1,
∵AB⊂平面ABC,A1B1⊄平面ABC,
∴A1B1∥平面ABC.
∵过A1B1的平面与平面ABC交于DE,
∴DE∥A1B1,∴DE∥AB.
5.若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有( )
A.0条 B.1条
C.2条 D.1条或2条
答案 C
解析 如图所示,平面α即平面EFGH,则四边形EFGH为平行四边形,
则EF∥GH.
∵EF⊄平面BCD,GH⊂平面BCD,
∴EF∥平面BCD.
又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.
又EF⊂平面EFGH,CD⊄平面EFGH.
∴CD∥平面EFGH,
同理,AB∥平面EFGH,
所以与平面α(平面EFGH)平行的棱有2条.
6.(2022·郑州模拟)如图,四棱柱ABCD-A1B1C1D1中,四边形ABCD为平行四边形,E,F分别在线段DB,DD1上,且==,G在CC1上且平面AEF∥平面BD1G,则=( )
A. B. C. D.
答案 B
解析 如图所示,延长AE交CD于H,连接FH,则△DEH∽△BEA,所以==.因为平面AEF∥平面BD1G,平面AEF∩平面CDD1C=FH,平面BD1G∩平面CDD1C1=D1G,所以FH∥D1G.又四边形CDD1C1是平行四边形,所以△DFH∽△C1GD1,所以=,因为==,所以=,因为=,所以FD1=C1G,DF=CG,所以=,故选B.
7.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且____________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.
①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.
可以填入的条件有________(填序号).
答案 ①或③
解析 由面面平行的性质定理可知,①正确;当m∥γ,n∥β时,n和m可能平行或异面,②错误;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以m∥n,③正确.
8.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是________.
答案 ①④
解析 ①中,易知NP∥AA′,MN∥A′B,
∴平面MNP∥平面AA′B,可得出AB∥平面MNP(如图).
④中,NP∥AB,能得出AB∥平面MNP.
在②③中不能判定AB∥平面MNP.
9.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.
答案 Q为CC1的中点
解析 如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,D1B,QB⊂平面D1BQ,所以平面D1BQ∥平面PAO.故Q为CC1的中点时,有平面D1BQ∥平面PAO.
10.如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
(1)求证:AP∥平面BEF;
(2)求证:GH∥平面PAD.
证明 (1)如图,连接EC,因为AD∥BC,BC=AD,E为AD中点,
所以BC∥AE,BC=AE,
所以四边形ABCE是平行四边形,
所以O为AC的中点.
又因为F是PC的中点,所以FO∥AP,
因为FO⊂平面BEF,AP⊄平面BEF,
所以AP∥平面BEF.
(2)连接FH,OH,因为F,H分别是PC,CD的中点,所以FH∥PD,
因为PD⊂平面PAD,FH⊄平面PAD,
所以FH∥平面PAD.
又因为O是BE的中点,H是CD的中点,
所以OH∥AD,
因为AD⊂平面PAD,OH⊄平面PAD,
所以OH∥平面PAD.
又FH∩OH=H,FH,OH⊂平面OHF,
所以平面OHF∥平面PAD.
又因为GH⊂平面OHF,
所以GH∥平面PAD.
11.(2022·百校大联考)已知在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥DC,AB∥DC,DC=2AB,Q为PC的中点.
(1)求证:BQ∥平面PAD;
(2)若PD=3,BC=,BC⊥BD,试在线段PC上确定一点S,使得三棱锥S-BCD的体积为.
(1)证明 取PD的中点G,连接AG,GQ,
因为Q为PC的中点,
所以GQ∥DC,且GQ=DC,
又因为AB∥DC,DC=2AB,
所以GQ∥AB,GQ=AB,
所以四边形ABQG是平行四边形,
所以BQ∥AG,
又BQ⊄平面PAD,AG⊂平面PAD,
所以BQ∥平面PAD.
(2)解 因为在四边形ABCD中,AB∥CD,AD⊥DC,DC=2AB,
所以点B在线段CD的垂直平分线上,
又因为BC=,BC⊥BD,
所以BD=BC=,
所以△BCD的面积S=××=1.
设点S到平面ABCD的距离为h,
所以×1×h=,所以h=2,
又PD⊥平面ABCD,PD=3,
所以点S在线段PC上靠近点P的三等分点处.
12.《九章算术·商功》记载了一个古代数学名词“堑堵”.即两底面为直角三角形的直棱柱,亦即长方体的斜截平分体.如图所示,堑堵(即直三棱柱)ABC-DEF中,AB⊥AC,AB=AC=2,AD=4,G是FC的中点,则下列说法错误的是( )
A.点D到平面AGE的距离为
B.平面ABC内存在直线平行于平面AEG
C.三角形AGE为直角三角形
D.BE与AG的夹角为
答案 D
解析 设点D到平面AGE的距离为h,则由VD-AGE=VE-ADG可知h·×2×2=×2××2×4,则h=,A正确;
取ED,EA的中点M、N,连接MN,FM,GN,则MN∥FG,MN=FG,
∴四边形MNGF为平行四边形,∴MF∥NG,
∵MF⊄平面AGE,NG⊂平面AGE,
∴MF∥平面AGE,而MF⊂平面DEF,平面ABC∥平面DEF,B正确;
依题意可知,AG=2,EG=2,EA=2,∴AG2+EG2=EA2,∴AG⊥GE,
∴△AGE为直角三角形,C正确;
∵BE∥CG,∴∠AGC即为BE与AG所成的角(或其补角),
∵G为CF的中点,CF=AD=4,AC=2,
∴AC=CG,
又CF⊥平面ABC,∴∠AGC=,D错误.
13.如图,在棱长为1的正方体ABCD-A1B1C1D1中,M,N分别是A1D1,A1B1的中点,过直线BD的平面α∥平面AMN,则平面α截该正方体所得截面的面积为________.
答案
解析 如图1,分别取B1C1,C1D1的中点E,F,连接EF,BE,DF,B1D1,ME,易知EF∥B1D1∥BD,AB∥ME,AB=EM,所以四边形ABEM为平行四边形,则AM∥BE,又BD和BE为平面BDFE内的两条相交直线.
图1 图2
所以平面AMN∥平面BDFE,
即平面BDFE为平面α,BD=,EF=B1D1=,得四边形BDFE为等腰梯形,DF=BE=,
在等腰梯形BDFE如图2中,
过E,F作BD的垂线,则四边形EFGH为矩形,
∴其高FG===,
故所得截面的面积为
××=.
14.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
(1)证明 如图,连接B1C,ME.
因为M,E分别为BB1,BC的中点,
所以ME∥B1C,且ME=B1C.
又因为N为A1D的中点,所以ND=A1D.
由题设知A1B1綉DC,
可得B1C綉A1D,故ME綉ND,
因此四边形MNDE为平行四边形,
所以MN∥ED.
又MN⊄平面C1DE,DE⊂平面C1DE,
所以MN∥平面C1DE.
(2)解 过点C作C1E的垂线,垂足为H.
由已知可得DE⊥BC,DE⊥C1C,
又BC∩C1C=C,BC,C1C⊂平面C1CE,
所以DE⊥平面C1CE,
故DE⊥CH.所以CH⊥平面C1DE,
故CH的长即为点C到平面C1DE的距离.
由已知可得CE=1,C1C=4,
所以C1E=,故CH=.
从而点C到平面C1DE的距离为.
相关试卷
这是一份2024年数学高考大一轮复习第八章 §8.8 空间距离及立体几何中的探索性问题[培优课],共4页。
这是一份2024年数学高考大一轮复习第八章 §8.6 空间向量与立体几何,共4页。试卷主要包含了已知a=,b=,A,B等内容,欢迎下载使用。
这是一份2024年数学高考大一轮复习第八章 §8.6 空间向量与立体几何,共8页。试卷主要包含了空间向量的有关定理,空间位置关系的向量表示等内容,欢迎下载使用。