


2024年数学高考大一轮复习第二章 §2.12 函数模型的应用(附答单独案解析)
展开§2.12 函数模型的应用
考试要求 1.了解指数函数、对数函数与一次函数增长速度的差异.2.理解“指数爆炸”“对数增长”“直线上升”等术语的含义.3.能选择合适的函数模型刻画现实问题的变化规律,了解函数模型在社会生活中的广泛应用.
知识梳理
1.三种函数模型的性质
函数 性质 | y=ax(a>1) | y=logax(a>1) | y=xn(n>0) |
在(0,+∞)上的增减性 | 单调递增 | 单调递增 | 单调递增 |
增长速度 | 越来越快 | 越来越慢 | 相对平稳 |
图象的变化 | 随x的增大逐渐表现为与____平行 | 随x的增大逐渐表现为与____平行 | 随n值的变化而各有不同 |
2.常见的函数模型
函数模型 | 函数解析式 |
一次函数模型 | f(x)=ax+b(a,b为常数,a≠0) |
二次函数模型 | f(x)=ax2+bx+c(a,b,c为常数,a≠0) |
反比例函数模型 | f(x)=+b(k,b为常数,k≠0) |
指数函数模型 | f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0) |
对数函数模型 | f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0) |
幂函数模型 | f(x)=axα+b(a,b,α为常数,a≠0,α≠0) |
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)函数y=2x的函数值比y=x2的函数值大.( )
(2)某商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若九折出售,则每件还能获利.( )
(3)在(0,+∞)上,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xa(a>0)和y=logax(a>1)的增长速度.( )
(4)在选择函数模型解决实际问题时,必须使所有的数据完全符合该函数模型.( )
教材改编题
1.当x越来越大时,下列函数中增长速度最快的是( )
A.y=5x B.y=log5x
C.y=x5 D.y=5x
2.在某个物理实验中,测量得到变量x和变量y的几组数据,如下表:
x | 0.50 | 0.99 | 2.01 | 3.98 |
y | -0.99 | -0.01 | 0.98 | 2.00 |
则对x,y最适合的函数模型是( )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=log2x
3.某超市的某种商品的日利润y(单位:元)与该商品的当日售价x(单位:元)之间的关系为y=-+12x-210,那么该商品的日利润最大时,当日售价为________元.
题型一 用函数图象刻画变化过程
例1 (1)血药浓度是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:
根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是( )
A.首次服用该药物1单位约10分钟后,药物发挥治疗作用
B.每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
D.首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒
听课记录:___________________________________________________________________
_____________________________________________________________________________
(2)根据一组试验数据画出的散点图如图所示.
现有如下5个函数模型:①y=0.6x-0.12;②y=2x-2.02;③y=2x-5.4x+6;④y=log2x;⑤y=x+1.84.请从中选择一个函数模型,使它能近似地反映这些数据的规律,应选________.(填序号)
听课记录:___________________________________________________________________
_____________________________________________________________________________
思维升华 判断函数图象与实际问题变化过程相吻合的两种方法
(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选择函数图象.
(2)验证法:根据实际问题中两变量的变化快慢等特点,结合函数图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.
跟踪训练1 如图所示,△OAB是边长为2的等边三角形,直线x=t截这个三角形位于此直线左方的图形面积为y(见图中阴影部分),则函数y=f(x)的大致图形为( )
题型二 已知函数模型的实际问题
例2 (1)(2021·全国甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lg V.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(≈1.259)( )
A.1.5 B.1.2 C.0.8 D.0.6
听课记录:___________________________________________________________________
_____________________________________________________________________________
(2)(2022·莆田质检)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P(单位:mg/L)与时间t(单位:h)间的关系为P=P0·e-kt,其中P0,k是正的常数.如果2 h后还剩下90%的污染物,5 h后还剩下30%的污染物,那么8 h后还剩下______%的污染物.
听课记录:___________________________________________________________________
_____________________________________________________________________________
思维升华 已知函数模型解决实际问题的关键
(1)认清所给函数模型,弄清哪些量为待定系数.
(2)根据已知利用待定系数法,确定模型中的待定系数.
(3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.
跟踪训练2 (1)在流行病学中,基本传染数是指每名感染者平均可传染的人数.假设某种传染病的基本传染数为R0,1个感染者在每个传染期会接触到N个新人,这N个人中有V个人接种过疫苗,那么1个感染者传染人数为(N-V).已知某种传染病在某地的基本传染数R0=4,为了使1个感染者传染人数不超过1,则该地疫苗的接种率最小为( )
A.45% B.55% C.65% D.75%
(2)牛顿曾经提出了在常温环境下的温度冷却模型θ=θ0+(θ1-θ0)e-kt(t为时间,单位:分钟,θ0为环境温度,θ1为物体初始温度,θ为冷却后温度),假设一杯开水温度θ1=100 ℃,环境温度θ0=20 ℃,常数k=0.2,大约经过_______分钟水温降为40 ℃(参考数据:ln 2≈0.7)( )
A.10 B.9 C.8 D.7
题型三 构造函数模型的实际问题
例3 智能辅助驾驶已开始得到初步应用,其自动刹车的工作原理是用雷达测出车辆与障碍物之间的距离,并结合车速转化为所需时间,当此距离等于报警距离时就开始报警,等于危险距离时就自动刹车.若将报警时间划分为4段,分别为准备时间t0与人的反应时间t1,系统反应时间t2,制动时间t3,相应的距离分别为d0,d1,d2,d3,如图所示.当车速为v(米/秒),且0<v≤33.3时,通过大数据统计分析得到下表给出的数据(其中系数k随地面湿滑程度等路面情况而变化,且1≤k≤2).
阶段 | 准备 | 人的反应 | 系统反应 | 制动 |
时间 | t0 | t1=0.8秒 | t2=0.2秒 | t3 |
距离 | d0=10米 | d1 | d2 | d3=米 |
(1)请写出报警距离d(米)与车速v(米/秒)之间的函数关系式,并求当k=2时,当汽车达到报警距离时,若人和系统均未采取任何制动措施,仍以此速度行驶的情况下,汽车撞上固定障碍物的最短时间;
(2)若要求汽车在k=1的路面上行驶时报警距离均小于50米,则汽车的行驶速度应限制在多少以下(单位:米/秒)?
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 构建函数模型解决实际问题的步骤
(1)建模:抽象出实际问题的数学模型;
(2)推理、演算:对数学模型进行逻辑推理或数学运算,得到问题在数学意义上的解;
(3)评价、解释:对求得的数学结果进行深入讨论,作出评价、解释,然后返回到原来的实际问题中去,得到实际问题的解.
跟踪训练3 (1)2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆.嫦娥五号返回舱之所以能达到如此高的再入精度,主要是因为它采用弹跳式返回弹道,实现了减速和再入阶段弹道调整,这与“打水漂”原理类似(如图所示).现将石片扔向水面,假设石片第一次接触水面的速率为100 m/s,这是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率为上一次的90%,若要使石片的速率低于60 m/s,则至少需要“打水漂”的次数为(参考数据:取ln 0.6≈-0.511,ln 0.9≈-0.105)( )
A.4 B.5 C.6 D.7
(2)网店和实体店各有利弊,两者的结合将在未来一段时期内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2022年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x(单位:万件)与投入实体店体验安装的费用t(单位:万元)之间满足函数关系式x=3-.已知网店每月固定的各种费用支出为3万元,产品每1万件的进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司的最大月利润是________万元.
2024年数学高考大一轮复习第二章 培优课 §2.5 函数性质的综合应用(附答单独案解析): 这是一份2024年数学高考大一轮复习第二章 培优课 §2.5 函数性质的综合应用(附答单独案解析),共2页。
2024年数学高考大一轮复习第二章 §2.12 函数模型的应用(附答单独案解析): 这是一份2024年数学高考大一轮复习第二章 §2.12 函数模型的应用(附答单独案解析),共4页。试卷主要包含了有一组实验数据如下表所示等内容,欢迎下载使用。
2024年数学高考大一轮复习第二章 §2.10 函数的图象(附答单独案解析): 这是一份2024年数学高考大一轮复习第二章 §2.10 函数的图象(附答单独案解析),共4页。