所属成套资源:2024年高考数学第一轮复习资料试卷
2024年数学高考大一轮复习第八章 培优课 §8.8 空间距离及立体几何中的探索性问题
展开
这是一份2024年数学高考大一轮复习第八章 培优课 §8.8 空间距离及立体几何中的探索性问题,共4页。
§8.8 空间距离及立体几何中的探索性问题 题型一 空间距离例1 (2022·济宁模拟)如图,在三棱柱ABC-A1B1C1中,AB⊥平面BCC1B1,BC=AB=AA1=2,BC1=2,M为线段AB上的动点.(1)证明:BC1⊥CM;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)若E为A1C1的中点,求点A1到平面BCE的距离.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 求点面距一般有以下三种方法.(1)作点到面的垂线,求点到垂足的距离;(2)等体积法;(3)向量法. 跟踪训练1 (1)(2023·枣庄模拟)在长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点F,G分别是AB,CC1的中点,则△D1GF的面积为________.(2)如图所示,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.①证明:D1E⊥A1D;②当E为AB的中点时,求点E到平面ACD1的距离.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 题型二 立体几何中的探索性问题例2 (2022·常德模拟)如图,三棱柱ABC-A1B1C1的底面是等边三角形,平面ABB1A1⊥平面ABC,A1B⊥AB,AC=2,∠A1AB=60°,O为AC的中点.(1)求证:AC⊥平面A1BO;(2)试问线段CC1上是否存在点P,使得二面角P-OB-A1的余弦值为,若存在,请计算的值;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 (1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.跟踪训练2 如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
相关试卷
这是一份高考数学第一轮复习复习第7节 空间距离及立体几何中的探索性问题(讲义),共34页。
这是一份2024年高考数学第一轮复习讲义第八章培优课8.8 空间距离及立体几何中的探索性问题(学生版+解析),共17页。试卷主要包含了))等内容,欢迎下载使用。
这是一份2024年数学高考大一轮复习第八章 §8.8 空间距离及立体几何中的探索性问题[培优课],共4页。