搜索
    上传资料 赚现金
    英语朗读宝

    2024年数学高考大一轮复习第九章9.14 圆锥曲线中探索性与综合性问题

    2024年数学高考大一轮复习第九章 §9.14 圆锥曲线中探索性与综合性问题第1页
    2024年数学高考大一轮复习第九章 §9.14 圆锥曲线中探索性与综合性问题第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年数学高考大一轮复习第九章 §9.14 圆锥曲线中探索性与综合性问题

    展开

    这是一份2024年数学高考大一轮复习第九章 §9.14 圆锥曲线中探索性与综合性问题,共4页。
    §9.14 圆锥曲线中探索性与综合性问题题型一 探索性问题1 (2023·南通模拟)已知双曲线C1(a>0b>0)的离心率为2,且过点.(1)求双曲线C的标准方程;(2)Q为双曲线C右支第一象限上的一个动点,F为双曲线C的右焦点,在x轴的负半轴上是否存在定点M使得QFM2QMF?若存在,求出点M的坐标;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·淄博模拟)已知抛物线Cx22py(p>0)的焦点为F,点M(2m)在抛物线C上,且|MF|2.(1)求实数m的值及抛物线C的标准方程;(2)不过点M的直线l与抛物线C相交于AB两点,若直线MAMB的斜率之积为-2,试判断直线l能否与圆(x2)2(ym)280相切?若能,求此时直线l的方程;若不能,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型二 圆锥曲线的综合问题2 (2023·福州模拟)如图,O为坐标原点,抛物线C1y22px(p>0)的焦点是椭圆C21(a>b>0)的右焦点,A为椭圆C2的右顶点,椭圆C2的长轴长为|AB|8,离心率e.(1)求抛物线C1和椭圆C2的方程;(2)A点作直线lC1CD两点,射线OCOD分别交C2EF两点,记OEFOCD的面积分别为S1S2,问是否存在直线l,使得S1S2313?若存在,求出直线l的方程;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r,弦长的一半h,弦心距d满足r2h2d2;圆的弦的垂直平分线过圆心;若AB是圆的直径,则圆上任一点P·0.跟踪训练2 如图,过抛物线Ey22px(p>0)焦点F的直线l交抛物线于点AB|AB|的最小值为4,直线x=-4分别交直线AOBO于点CD(O为原点)(1)求抛物线E的方程;(2)M过点CD,交x轴于点G(t,0)H(m,0),证明:若t为定值时,m也为定值.并求t=-8时,ABH面积S的最小值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

    相关试卷

    2025高考数学一轮复习-圆锥曲线中的证明、探索性问题-专项训练【含解析】:

    这是一份2025高考数学一轮复习-圆锥曲线中的证明、探索性问题-专项训练【含解析】,共5页。

    2024年高考数学第一轮复习讲义第九章9.14 圆锥曲线中探索性与综合性问题(学生版+解析):

    这是一份2024年高考数学第一轮复习讲义第九章9.14 圆锥曲线中探索性与综合性问题(学生版+解析),共13页。

    2024年数学高考大一轮复习第九章 §9.14 圆锥曲线中探索性与综合性问题:

    这是一份2024年数学高考大一轮复习第九章 §9.14 圆锥曲线中探索性与综合性问题,共3页。试卷主要包含了已知椭圆C,已知抛物线E,如图,抛物线C等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map