所属成套资源:2024年高考数学第一轮复习资料试卷
2024年数学高考大一轮复习第九章 §9.14 圆锥曲线中探索性与综合性问题
展开
这是一份2024年数学高考大一轮复习第九章 §9.14 圆锥曲线中探索性与综合性问题,共4页。
§9.14 圆锥曲线中探索性与综合性问题题型一 探索性问题例1 (2023·南通模拟)已知双曲线C:-=1(a>0,b>0)的离心率为2,且过点.(1)求双曲线C的标准方程;(2)设Q为双曲线C右支第一象限上的一个动点,F为双曲线C的右焦点,在x轴的负半轴上是否存在定点M使得∠QFM=2∠QMF?若存在,求出点M的坐标;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·淄博模拟)已知抛物线C:x2=2py(p>0)的焦点为F,点M(2,m)在抛物线C上,且|MF|=2.(1)求实数m的值及抛物线C的标准方程;(2)不过点M的直线l与抛物线C相交于A,B两点,若直线MA,MB的斜率之积为-2,试判断直线l能否与圆(x-2)2+(y-m)2=80相切?若能,求此时直线l的方程;若不能,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型二 圆锥曲线的综合问题例2 (2023·福州模拟)如图,O为坐标原点,抛物线C1:y2=2px(p>0)的焦点是椭圆C2:+=1(a>b>0)的右焦点,A为椭圆C2的右顶点,椭圆C2的长轴长为|AB|=8,离心率e=.(1)求抛物线C1和椭圆C2的方程;(2)过A点作直线l交C1于C,D两点,射线OC,OD分别交C2于E,F两点,记△OEF和△OCD的面积分别为S1和S2,问是否存在直线l,使得S1∶S2=3∶13?若存在,求出直线l的方程;若不存在,请说明理由.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r,弦长的一半h,弦心距d满足r2=h2+d2;圆的弦的垂直平分线过圆心;若AB是圆的直径,则圆上任一点P有·=0.跟踪训练2 如图,过抛物线E:y2=2px(p>0)焦点F的直线l交抛物线于点A,B,|AB|的最小值为4,直线x=-4分别交直线AO,BO于点C,D(O为原点).(1)求抛物线E的方程;(2)圆M过点C,D,交x轴于点G(t,0),H(m,0),证明:若t为定值时,m也为定值.并求t=-8时,△ABH面积S的最小值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
相关试卷
这是一份2025高考数学一轮复习-圆锥曲线中的证明、探索性问题-专项训练【含解析】,共5页。
这是一份2024年高考数学第一轮复习讲义第九章9.14 圆锥曲线中探索性与综合性问题(学生版+解析),共13页。
这是一份2024年数学高考大一轮复习第九章 §9.14 圆锥曲线中探索性与综合性问题,共3页。试卷主要包含了已知椭圆C,已知抛物线E,如图,抛物线C等内容,欢迎下载使用。