所属成套资源:2024年高考数学第一轮复习资料试卷
2024年数学高考大一轮复习第三章 §3.6 利用导数证明不等式
展开这是一份2024年数学高考大一轮复习第三章 §3.6 利用导数证明不等式,共3页。试卷主要包含了证明等内容,欢迎下载使用。
§3.6 利用导数证明不等式
考试要求 导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果.
题型一 将不等式转化为函数的最值问题
例1 (2023·潍坊模拟)已知函数f(x)=ex-ax-a,a∈R.
(1)讨论f(x)的单调性;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)当a=1时,令g(x)=.证明:当x>0时,g(x)>1.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.
跟踪训练1 设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间与极值;
(2)求证:当a>ln 2-1且x>0时,ex>x2-2ax+1.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型二 将不等式转化为两个函数的最值进行比较
例2 (2023·苏州模拟)已知函数f(x)=eln x-ax(a∈R).
(1)讨论f(x)的单调性;
(2)当a=e时,证明f(x)-+2e≤0.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x与ex,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.
跟踪训练2 (2023·合肥模拟)已知函数f(x)=ex+x2-x-1.
(1)求f(x)的最小值;
(2)证明:ex+xln x+x2-2x>0.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型三 适当放缩证明不等式
例3 已知函数f(x)=aex-1-ln x-1.
(1)若a=1,求f(x)在(1,f(1))处的切线方程;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)证明:当a≥1时,f(x)≥0.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 导数方法证明不等式中,最常见的是ex和ln x与其他代数式结合的问题,对于这类问题,可以考虑先对ex和ln x进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:
(1)ex≥1+x,当且仅当x=0时取等号;
(2)ln x≤x-1,当且仅当x=1时取等号.
跟踪训练3 (2022·南充模拟)已知函数f(x)=ax-sin x.
(1)若函数f(x)为增函数,求实数a的取值范围;
(2)求证:当x>0时,ex>2sin x.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
相关试卷
这是一份2024年高考数学第一轮复习专题训练第三章 §3.6 利用导数证明不等式,共2页。试卷主要包含了证明等内容,欢迎下载使用。
这是一份2024年数学高考大一轮复习第三章 §3.6 利用导数证明不等式,共2页。试卷主要包含了已知函数f=ex-x-1.,已知函数f=xln x-ax.,已知函数f=xeax-ex.等内容,欢迎下载使用。
这是一份高考数学第一轮复习第三章 §3.6 利用导数证明不等式,共11页。