所属成套资源:2024年高考数学第一轮试卷【精品复习资料】
2024年数学高考大一轮复习第八章 §8.7 向量法求空间角
展开
这是一份2024年数学高考大一轮复习第八章 §8.7 向量法求空间角,共3页。
1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°. (1)求证:BD⊥平面PAC;(2)若PA=AB,求PB与AC所成角的余弦值. 2.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF. (1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值. 3.(2023·泰安模拟)如图,在五面体ABCDE中,已知AC⊥平面BCD,ED∥AC,且AC=BC=2ED=2,DC=DB=.(1)求证:平面ABE⊥平面ABC;(2)求二面角A-BE-C的余弦值. 4.(2022·新高考全国Ⅱ)如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E为PB的中点.(1)证明:OE∥平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值. 5.(2021·全国甲卷)已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1. (1)证明:BF⊥DE;(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小? 6.(2020·新高考全国Ⅰ)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l. (1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.
相关试卷
这是一份2024年数学高考大一轮复习第八章 §8.7 向量法求空间角,共7页。试卷主要包含了异面直线所成的角,直线与平面所成的角,二面角等内容,欢迎下载使用。
这是一份高考数学第一轮复习第八章 §8.6 几何法求空间角,共27页。试卷主要包含了异面直线所成的角,直线和平面所成的角,二面角等内容,欢迎下载使用。
这是一份2024高考数学第一轮复习:8.6 向量法求空间角(解析版),共48页。试卷主要包含了异面直线所成的角,直线与平面所成的角,二面角,0625等内容,欢迎下载使用。