2024年数学高考大一轮复习第三章 §3.5 利用导数研究恒(能)成立问题
展开1.已知函数f(x)=(x-2)ex.
(1)求f(x)在[-1,3]上的最值;
(2)若不等式2f(x)+2ax≥ax2对x∈[2,+∞)恒成立,求实数a的取值范围.
2.(2023·镇江模拟)已知函数f(x)=aln x-x(a∈R).
(1)求函数f(x)的单调区间;
(2)当a>0时,设g(x)=x-ln x-1,若对于任意x1,x2∈(0,+∞),均有f(x1)<g(x2),求a的取值范围.
3.(2023·福州模拟)已知函数f(x)=xln x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x≥1时,f(x)≤ax2-a,求a的取值范围.
4.已知函数f(x)=e2x-ax(a∈R),e为自然对数的底数.
(1)求函数f(x)的极值;
(2)若关于x的不等式a≤f(x)恒成立,求实数a的取值范围.
2024年高考数学第一轮复习专题训练81练第三章 §3.5 利用导数研究恒(能)成立问题: 这是一份2024年高考数学第一轮复习专题训练81练第三章 §3.5 利用导数研究恒(能)成立问题,共1页。试卷主要包含了已知函数f=ex.,已知函数f=aln x-x,已知函数f=xln x.等内容,欢迎下载使用。
2024年高考数学第一轮复习专题训练第三章 §3.5 利用导数研究恒(能)成立问题: 这是一份2024年高考数学第一轮复习专题训练第三章 §3.5 利用导数研究恒(能)成立问题,共2页。
2024年数学高考大一轮复习第三章 §3.5 利用导数研究恒(能)成立问题: 这是一份2024年数学高考大一轮复习第三章 §3.5 利用导数研究恒(能)成立问题,共4页。