数学华师大版14.2 勾股定理的应用第1课时教案
展开14.2勾股定理的应用
第1课时 勾股定理的应用(1)
【基本目标】
1.会用勾股定理解决较综合的问题.
2.树立数形结合的思想.
【教学重点】
勾股定理的综合应用.
【教学难点】
勾股定理的综合应用.
一、创设情景,导入新课
如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:
(1) 从点A出发画一条线段AB,使它的另一个端点B在格点(即小正方形的顶点)上,且长度为22;
(2) 画出所有的以(1)中的AB为边的等腰三角形, 使另一个顶点在格点上,且另两边的长度都是无理数.
二、师生互动,探究新知
如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上运动,量的滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑竿顶端A下滑多少米?
【分析】滑竿在下滑中它的长度是不变的,先在直角三角形ACB中利用勾股定理求出AC的长,然后再在直角三角形ECD中利用勾股定理求出CE的长,即可求出AE的长.
【教师点拨】勾股定理在实际生活中有着广泛的应用,他的前提是直角三角形,在求解时常运用题目中的条件构造直角三角形,而构造直角三角形方式有两种:一是根据已知条件中的直角构造,二是作垂线构造.
三、随堂练习,巩固新知
完成练习册中本课时对应的课后作业部分.
四、典例精析,拓展新知
例 如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离.
【分析】显然△ABC是直角三角形,根据示意图可求出AC和BC的长,从而根据勾股定理可以求出AB的长.
解:由示意图可知
AC=150-60=90(mm),BC=180-60=120(mm)
答:两圆孔中心A和B的距离为150mm.
五、运用新知,深化理解.
完成教材P123习题14.2中的第5题.
六、师生互动,课堂小结
这节课你学习了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上,教师归纳总结.
完成练习册中本课时对应的课后作业部分.
本课时所学内容是用勾股定理解决简单的实际问题(或数学问题).在实际生活中,很多问题可以用勾股定理解决,而解决这类问题都需要将其转化为数学问题,也就是通过构造直角三角形来完成.教学时应注意如何构造直角三角形,找出已知两个量,求出第三个量,或者利用勾股定理建立几个量之间的关系,解决问题时注意让学生动手,画出图形,从而建立直角三角形模型.本节课中由勾股定理解决立体图形上的最短路径问题,比较抽象,注意化“曲”为“平”,让学生动手操作,真正建立立体图形与平面图形之间的联系.
初中数学华师大版八年级上册第14章 勾股定理14.2 勾股定理的应用教案: 这是一份初中数学华师大版八年级上册第14章 勾股定理14.2 勾股定理的应用教案,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
华师大版八年级上册14.2 勾股定理的应用第2课时教学设计: 这是一份华师大版八年级上册14.2 勾股定理的应用第2课时教学设计,共2页。教案主要包含了基本目标,教学重点,教学难点等内容,欢迎下载使用。
华师大版八年级上册14.2 勾股定理的应用教学设计及反思: 这是一份华师大版八年级上册14.2 勾股定理的应用教学设计及反思,共6页。教案主要包含了知识与能力,过程与方法,情感态度价值观,教学重点,教学难点等内容,欢迎下载使用。