- 期中模拟卷02(湖南长沙,测试范围:人教版第21-24章)2023-2024学年九年级数学上学期期中模拟考试试题及答案(含答题卡) 试卷 1 次下载
- 期中模拟卷01(江苏)(苏科版九上第1~4章:一元二次方程、圆、概率统计)2023-2024学年九年级数学上学期期中模拟考试试题及答案(含答题卡) 试卷 6 次下载
- 期中模拟卷01(人教版,【测试范围:第21-24章】)2023-2024学年九年级数学上学期期中模拟考试试题及答案(含答题卡) 试卷 2 次下载
- 期中模拟卷02(人教版,【测试范围:第21-24章】)2023-2024学年九年级数学上学期期中模拟考试试题及答案(含答题卡) 试卷 1 次下载
- 期中模拟卷01(上海,测试范围:沪教版第24-25章)2023-2024学年九年级数学上学期期中模拟考试试题及答案(含答题卡) 试卷 3 次下载
期中模拟卷02(江苏)(苏科版九上第1~4章&第6章:一元二次方程、二次函数、圆、概率统计)2023-2024学年九年级数学上学期期中模拟考试试题及答案(含答题卡)
展开2023-2024学年上学期期中模拟考试
九年级数学
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
D | C | A | B | A | C | C | A |
9.x1=x2=﹣2 10.1:4 11.
12. 13.(20﹣x)(200+8x)=8450 14.1
15.2 16.
17.(8分)
解:(1)方程整理得:x2x,
配方得:x2x,即(x)2,
开方得:x±,
解得:x1=3,x2;······························································4分
(2)方程整理得:(x﹣5)2+2(x﹣5)=0,
分解因式得:(x﹣5)(x﹣5+2)=0,
解得:x1=5,x2=3.······························································8分
18.(8分)
解:(1)根据题意得:m=1+2+7+6+4﹣1﹣3﹣5﹣3=8,
甲队成绩的平均分为(1×6+2×7+7×8+9×6+10×4)=8.5,························2分
甲队成绩的中位数为8.5,·······················································4分
乙队成绩的众数为8,
乙队成绩的中位数为8,······················································6分
故答案为:8.5;8.5;8;8;
(2)王老师很有可能选择甲队代表学校参加市里比赛,
理由如下:甲队的平均分大于乙队的平均分;乙的方差与甲队的方差相差不大,甲队的中位数高于乙队的中位数.·······································································8分
19.(10分)
解:(1)此次抽查的学生为:60÷20%=300(人),
故答案为:300;···································································2分
(2)C组的人数为:300×40%=120(人),
A组的人数为:300﹣100﹣120﹣60=20(人),
·················································································4分
(3)此次抽查的学生有300人,随机询问一人,有300种等可能结果,其中活动时间低于1小时的有100+20=120种结果,
∴P(活动时间低于1小时),
则该生当天在校体育活动时间低于1小时的概率是.····································7分
(4)(人)
答:估计在当天达到国家规定体育活动时间的学生约有960人.···························10分
20.(8分)
(1)证明:Δ=(k+1)2﹣4×2(k﹣2)··············································1分
=k2﹣6k+17·······································································2分
=(k﹣3)2+8,
∵(k﹣3)2≥0,
∴(k﹣3)2+8≥8,
∴不论k取何值,此方程必有两个不相等的实数根;······································4分
(2)解:当b=a=4或c=a=4时,
把x=4代入方程x2﹣(k+1)x+2(k﹣2)=0得16﹣4(k+1)+2(k﹣2)=0,··············5分
解得k=4,··········································································6分
此时方程化为x2﹣5x+4=0,解得x1=4,x2=1,
∴等腰三角形的三边分别为4、4、1,符合题意;
∵Δ>0,
∴b≠c,
综上所述,k的值为4.······························································8分
21.(8分)
解:(1)∵∠ACB=90°,
∴∠BCE+∠GCA=90°,····························································1分
∵CG⊥BD,
∴∠CEB=90°,
∴∠CBE+∠BCE=90°,
∴∠CBE=∠GCA,·································································2分
又∵∠DCB=∠GAC=90°,
∴△BCD∽△CAG,·································································3分
∴,
∴,
∴.·········································································4分
(2)∵∠GAC+∠BCA=180°,
∴GA∥BC,
∴,
∴.······································································5分
∴,
∴,·································································6分
又∵3,
∴S△AFC.···································································8分
22.(8分)
(1)解:CE与⊙O相切.························································1分
证明如下:∵AB为⊙O的直径,
∴∠ACB=90°,
∵EC=ED,
∴∠DCE=∠EDC,
在Rt△DCF中,∠DCE+∠ECF=90°,
∴∠CDE+∠ECF=90°,
∵∠CDE+∠F=90°,
∴∠ECF=∠F,···································································2分
连接OC,
∵OF⊥AB,
∴∠DOA=90°,
∴∠A+∠ADO=90°,
∵OA=OC,
∴∠A=∠OCA,
∴∠OCA+∠ADO=90°,
∵∠ADO=∠CDE,
∴∠OCA+∠CDE=90°,
∵∠CDE=∠DCE,
∴∠OCA+∠DCE=90°,
∴EC⊥OC,
∴EC是⊙O的切线;·································································4分
(2)解:∵EF=3,ED=EF,
∴EC=DE=3,
∴OE5,·····················································5分
∴OD=OE﹣DE=2,
在Rt△OAD中,AD2 ,····································6分
在Rt△AOD和Rt△ACB中,
∵∠A=∠A,∠ACB=∠AOD,
∴Rt△AOD∽Rt△ACB,······························································7分
∴,
即,
∴AC.······································································8分
23.(8分)
解:(1)如图,点C即为所求;
···········································································4分
(2)如图,连接OD交AB于点F.
∵∠PCA=∠PCB,
∴,································································5分
∴OD⊥AB,
∵DE⊥OA,
∴∠OFA=∠OED=90°,····················································6分
∵∠FOA=∠EOD,OA=OD,
∴△OFA≌△OED(AAS),····················································7分
∴OE=OF=4,
∵OD⊥AB,
∴BF=AF,
∵OC=OA,
∴BC=2OF=8.·································································8分
24.(8分)
解:如图,延长DF交MG于Q,则DQ⊥MG,DQ=PG=23.6,·······················2分
∵BC⊥AP,MG⊥AP,
∴BC∥MG,
∴△ABC∽△ANG,··························································3分
∴,即,
∴NG=12,·································································4分
同理得:△DEF∽△DMQ,
∴,
∵EF=0.1米,DF=0.2米,
∴DF=2EF,································································6分
∴MQDQ23.6=11.8(米),
∴MN=MQ+QG﹣GN=11.8+1.5﹣12=1.3(米).
答:旗帜的宽度MN是1.3米.·················································8分
25.(10分)
解:(1)销售量:100+20100+160=260,·······································2分
利润:(100+160)(6﹣4﹣0.8)=312,···············································4分
则每天的销售量为260千克、销售利润为312元;
故答案为:260,312;
(2)将这种水果每千克降低x元,则每天的销售量是10020=100+200x(千克);
故答案为:(100+200x);································································6分
(3)设这种水果每千克降价x元,
根据题意得:(6﹣4﹣x)(100+200x)=300,···············································7分
2x2﹣3x+1=0,
解得:x=0.5或x=1,··································································8分
当x=0.5时,销售量是100+200×0.5=200<240;
当x=1时,销售量是100+200=300>240.
∵每天至少售出240千克,
∴x=1.
6﹣1=5,
答:张阿姨应将每千克的销售价降至5元.···············································10分
26.(12分)
解:(1)连接BB1,如图①所示:
则MN是BB1的垂直平分线,·······················································1分
作NN1⊥AB于N1,则NN1=BC=AD=3,
∴∠ABB1+∠N1MN=90°,
∵∠N1NM+∠N1MN=90°,
∴∠ABB1=∠N1NM,
∵∠A=∠NN1M=90°,
∴△ABB1∽△N1NM,······························································2分
∴,
∵MN1=BM﹣CN,
∴;··································································3分
(2)AC5,作BH⊥AC于H,
①当点P在CH上时,CP=CQ,作QE⊥AC交AC延长线于E,如图②﹣1所示:
则∠PQE+∠QPE=90°,
∵∠BPH+∠PBH=90°,∠QPE+∠BPH=180°﹣∠BPQ=180°﹣90°=90°,
∴∠PBH=∠QPE,
∵∠BHP=∠PEQ=90°,
∴△BHP∽△PEQ,······························································4分
∴,
∵∠QEC=∠D=90°,∠QCE=∠ACD,
∴△CEQ∽△CDA,······························································5分
∴,
∴,
同理可得:,
∴CECQCP,QECQCP,
∵S矩形ABCD=AB•AD=2AC•BH,
即4×3=5BH,
∴BH,······································································7分
∵∠ABC=∠BHC=90°,∠BCA=∠HCB,
∴△CBH∽△CAB,
∴,即,
∴CH,
∵,
∴,
解得:CP=1,
∴AP=AC﹣CP=5﹣1=4;··························································8分
②当点P在AH上时,PQ=CQ,过点Q作QE⊥AC于E,如图②﹣2所示:
则PE=CE,
同理可得:CP,
∴AP=AC﹣CP=5;
综上所述,如果△CPQ是等腰三角形,AP的值为4或;·································10分
(3)延长ON交CB于P,延长NO交AD于Q,作OH⊥AD于H,如图③所示:
∵四边形ABCD是矩形,
∴OD=OB,AD∥BC,
∴∠QDO=∠PBO,
在△ODQ和△OBP中,,
∴△ODQ≌△OBP(ASA),
∴DQ=PB,
设DQ=PB=x,则PE=x﹣2,
∵AD∥BC,
∴△AMD∽△BME,△AMQ∽△BMP,
∴,
∴,
即,
解得:x=6,
则PE=6﹣2=4,
在Rt△OHQ中,OHAB=2,HQAD+DQ3+6,
由勾股定理得:OQ,
AQ=AD+DQ=3+6=9,
∵AD∥BC,
∴△PNE∽△QNA,
∴,
设PN=4a,则NQ=9a,PQ=13a,OP=OQa,ON=OP﹣PNa,
由a,
解得:a,
∴ONa,
故答案为:.·································································12分
期中模拟卷02(浙江)(浙教版九上全册:二次函数、概率、圆、相似三角形)2023-2024学年九年级数学上学期期中模拟考试试题及答案(含答题卡): 这是一份期中模拟卷02(浙江)(浙教版九上全册:二次函数、概率、圆、相似三角形)2023-2024学年九年级数学上学期期中模拟考试试题及答案(含答题卡),文件包含期中模拟卷02全解全析docx、期中模拟卷02参考答案docx、期中模拟卷02考试版测试范围第1-4章浙教版A4版docx、期中模拟卷02答题卡A4版docx、期中模拟卷02考试版测试范围第1-4章浙教版A3版docx、期中模拟卷02答题卡A3版docx等6份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
期中模拟卷01(浙江)(浙教版九上全册:二次函数、概率、圆、相似三角形)2023-2024学年九年级数学上学期期中模拟考试试题及答案(含答题卡): 这是一份期中模拟卷01(浙江)(浙教版九上全册:二次函数、概率、圆、相似三角形)2023-2024学年九年级数学上学期期中模拟考试试题及答案(含答题卡),文件包含期中模拟卷01全解全析docx、期中模拟卷01参考答案docx、期中模拟卷01考试版测试范围第1-4章浙教版A4版docx、期中模拟卷01答题卡A4版docx、期中模拟卷01考试版测试范围第1-4章浙教版A3版docx、期中模拟卷01答题卡A3版docx等6份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
期中模拟卷02(人教版,【测试范围:第21-24章】)2023-2024学年九年级数学上学期期中模拟考试试题及答案(含答题卡): 这是一份期中模拟卷02(人教版,【测试范围:第21-24章】)2023-2024学年九年级数学上学期期中模拟考试试题及答案(含答题卡),文件包含期中模拟卷02全解全析docx、期中模拟卷02参考答案docx、期中模拟卷02考试版测试范围第21-24章人教版A4版docx、期中模拟卷02答题卡A4版docx、期中模拟卷02考试版测试范围第21-24章人教版A3版docx、期中模拟卷02答题卡A3版docx等6份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。