年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    苏科版八年级上册数学专题2.2最值模型之将军饮马含解析答案

    苏科版八年级上册数学专题2.2最值模型之将军饮马含解析答案第1页
    苏科版八年级上册数学专题2.2最值模型之将军饮马含解析答案第2页
    苏科版八年级上册数学专题2.2最值模型之将军饮马含解析答案第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏科版八年级上册数学专题2.2最值模型之将军饮马含解析答案

    展开

    这是一份苏科版八年级上册数学专题2.2最值模型之将军饮马含解析答案,共34页。
    专题2.2�最值模型之将军饮马学校:___________姓名:___________班级:___________考号:___________ 评卷人得分  一、单选题1.如图,已知A31)与B10),PQ是直线上的一条动线段且QP的下方),当AP+PQ+QB最小时,Q点坐标为(    A.( B.( C.(00 D.(112.如图,点在直线的同侧,的距离的距离,已知是直线上的一个动点,记的最小值为的最大值为,则的值为(    A160 B150 C140 D1303.如图,点PAOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若PMN周长的最小值是6 cm,则AOB的度数是(      A15 B30 C45 D604.如图,在锐角ABC中,AB6ABC60°ABC的平分线交AC于点D,点PQ分别是BDAB上的动点,则APPQ的最小值为(    A6 B6 C3 D35.如图,在锐角三角形中,的面积为平分,若分别是上的动点,则的最小值为(    A B C D6.如图,在锐角ABC中,AB6ABC60°ABC的平分线交AC于点D,点PQ分别是BDAB上的动点,则APPQ的最小值为(    A6 B6 C3 D37.如图,在ABC中,DE是边AC的垂直平分线,交AC于点D,交AB于点E,点P是直线DE上的一个动点,若AB=5,则PB+PC的最小值为(    A5 B6 C7 D88.如图,在四边形 ABCD 中,∠C=70°∠B=∠D=90°EF 分别是 BCDC 上的点,当AEF 的周长最小时,∠EAF 的度数为()A30° B40° C50° D70°9.如图,已知AOB的大小为αPAOB内部的一个定点,且OP4,点EF分别是OAOB上的动点,若PEF周长的最小值等于4,则α=(    A30° B45° C60° D90° 评卷人得分  二、填空题10.在平面直角坐标系中,RtOAB的顶点Ax轴上,点A的坐标为(40),∠AOB=30°,点E的坐标为(10),点P为斜边OB上的一个动点,则PA+PE的最小值为     11.如图,在等边ABC中,EAC边的中点,AD垂直平分BCPAD上的动点.若AD=6,则EP+CP的最小值为               12.如图所示,在中,,直线EFAB的垂直平分线,DBC的中点,MEF上一个动点,的面积为12,则周长的最小值是               13.如图,将ABC沿AD折叠使得顶点C恰好落在AB边上的点M处,DBC上,点P在线段AD上移动,若AC6CD3BD7,则PMB周长的最小值为    14.如图,已知直线之间的距离为8,点P到直线的距离为6,点Q到直线的距离为4PQ=,在直线l1上有一动点A,直线上有一动点B,满足AB,且PA+AB+BQ最小,此时PA+BQ=      15如图,CD是直线x1上长度固定为1的一条动线段.已知A(﹣10),B04),则四边形ABCD周长的最小值为                  16.如图,在等边中,E边的中点,P的中线上的动点,且,则的最大值是        17.如图,在四边形ABCD中,BCD50°BD90°,在BCCD上分别取一点MN,使AMN的周长最小,则MAN     °18.如图,ACB90°BCAC4,平面内直线BC的左侧有一点P,连接BPCP,将沿BC翻折至同一平面得到,连接.若取得最大值时,则      19.如图,在平面直角坐标系中,已知轴上的一条动线段,且,当取最小值时,点坐标为      .20.如图,AB两点在直线外的同侧,A的距离B的距离,点P在直线上运动,则的最大值等于           21.如图,在RtABC中,ACB90°ACBC,点C在直线MN上,BCN30°,点PMN上一动点,连结APBP.当AP+BP的值最小时,CBP的度数为      22.如图,ADBAC内的一条射线,且PAD上一动点,则的最大值是      23.如图,点AB在直线的同侧,点A的距离,点B的距离,已知P是直线上的一个动点,记的最小值为a的最大值为b1        2         评卷人得分  三、解答题24.直线l同旁有两个定点AB,在直线l上存在点P,使得的值最小.解法:如图1,作点A关于直线l的对称点,连接,则与直线l的交点即为P,且的最小值为请利用上述模型解决下列问题:(1)几何应用:如图2中,E的中点,P边上的一动点,则的最小值为 (2)几何拓展:如图3中,,若在上各取一点MN使的值最小,画出图形,求最小值并简要说明理由.25.如图直线l1l2表示一条河的两岸,且,现要在这条河上建一座桥.桥建在何处才能使从村庄A经过河到村庄B的路线最短?画出示意图,并说明理由.26.如图,等边(三边相等,三个内角都是的三角形)的边长为,动点和动点同时出发,分别以每秒的速度由和由运动,其中一个动点到终点时,另一个也停止运动,设运动时间为交于点1)在运动过程中,始终相等吗?请说明理由;2)连接,求为何值时,3)若于点,点上的点,且使最短.当时,的最小值为多少?请直接写出这个最小值,无需说明理由.27.阅读理解.材料一:平面内任意两点间的距离公式为:,特别地,当两个点同时在轴或轴上,或者两点所在直线平行于轴或轴时,两点间的距离公式可化简为材料二:如图1,点在直线的两侧,在直线上找一点,使得的值最大.解题思路:如图2,作点关于直线的对称点,连接并延长,交直线于点,则点之间的距离即为的最大值.  请根据以上材料解决下列问题:1)已知点在平行于轴的直线上,点在一三象限的角平分线上,,求点的坐标;2)如图3,在平面直角坐标系中,点,点,请在直线上找一点,使得最大,求出的最大值及此时点的坐标.
    参考答案:1A【分析】作点B关于直线y=x的对称点01),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后,得20),连接交直线y=x于点Q,求出直线解析式,与y=x组成方程组,即可求出Q点的坐标.【详解】解:作点B关于直线y=x的对称点01),过点A作直线MN,使得MN平行于直线y=x,并沿MN向下平移单位后,得20),连接交直线y=x于点Q,如下图所示.四边形是平行四边形,值最小时,值最小.根据两点之间线段最短,即三点共线时,值最小.01),20),直线的解析式,即Q点的坐标为().故选A【点睛】本题主要考查了一次函数图像上点的坐标特征、最短路径问题.2A【分析】作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,在根据勾股定理求出线段的长,即为PA+PB的最小值,延长ABMN于点,此时,由三角形三边关系可知,故当点P运动到最大,过点B由勾股定理求出AB的长就是的最大值,代入计算即可得.【详解】解:如图所示,作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线中,根据勾股定理得,PA+PB的最小值是如图所示,延长ABMN于点当点P运动到点时,最大,过点B,则中,根据勾股定理得,故选A【点睛】本题考查了最短线路问题和勾股定理,解题的关键是熟知两点之间线段最短及三角形的三边关系.3B【分析】分别作点P关于OAOB的对称点CD,连接CD,分别交OAOB于点MN,连接OCODPMPNMN,由对称的性质得出PM=DMOP=OC∠COA=∠POAPN=DNOP=OD∠DOB=∠POB,得出∠AOB=∠COD,证出OCD是等边三角形,得出∠COD=60°,即可得出结果.【详解】分别作点P关于OAOB的对称点CD,连接CD分别交OAOB于点MN,连接OCODPMPNMN,如图所示:P关于OA的对称点为D,关于OB的对称点为C∴PM=DMOP=OD∠DOA=∠POAP关于OB的对称点为C∴PN=CNOP=OC∠COB=∠POB∴OC=OP=OD∠AOB=∠COD∵△PMN周长的最小值是6cm∴PM+PN+MN=6∴DM+CN+MN=6CD=6=OP∴OC=OD=CDOCD是等边三角形,∴∠COD=60°∴∠AOB=30°故选:B【点睛】此题考查轴对称的性质,最短路线问题,等边三角形的判定与性质,熟练掌握轴对称的性质,证明三角形是等边三角形是解题的关键.4D【分析】在BC上取E,使BEBQ,这样APPQ转化为APPE即可得出答案.【详解】解:如图,在BC上取E,使BEBQ,连接PE,过AAHBCHBDABC的平分线,∴∠ABDCBDBPBPBEBQ∴△BPQ≌△BPESAS),PEPQAPPQ的最小即是APPE最小,APPEAH时最小,RtABH中,AB6ABC60°AHABcos60°APPQ的最小为故选:D【点睛】本题考查两条线段和的最小值,解题的关键是作辅助线把PQ转化到BD的另一侧.5B【分析】作N关于的对称点,连结,与交于点O,过点C于点E,根据角平分线的性质可得,则,根据两点之间线段最短可得的最小值为,再根据垂线段最短,的最小值为C点到AB的垂线段CE的长度,最后由的面积求出,即可求解.【详解】解:如图,作N关于的对称点,连结,与交于点O,过CE平分 上,且根据两点之间线段最短可得 的最小值为,即C点到线段某点的连线,根据垂线段最短,的最小值为C点到的垂线段的长度, 的面积为 10 故选B【点睛】本题主要考查了最短路径问题, 角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.6D【分析】在BC上取E,使BEBQ,这样APPQ转化为APPE即可得出答案.【详解】解:如图,在BC上取E,使BEBQ,连接PE,过AAHBCHBDABC的平分线,∴∠ABDCBDBPBPBEBQ∴△BPQ≌△BPESAS),PEPQAPPQ的最小即是APPE最小,APPEAH时最小,RtABH中,AB6ABC60°AHABcos60°APPQ的最小为故选:D【点睛】本题考查两条线段和的最小值,解题的关键是作辅助线把PQ转化到BD的另一侧.7A【分析】如图所示,连接AP,根据线段垂直平分线的性质得到AP=PC,从而得到要使PB+PC最小,则PA+PB最小,当PAB三点共线,即PE重合时,PA+PB有最小值,最小值为AB,由此即可得到答案.【详解】解:如图所示,连接APDEAC的垂直平分线,AP=PCPB+PC=PA+PB要使PB+PC最小,则PA+PB最小,PAB三点共线,即PE重合时,PA+PB有最小值,最小值为ABAB=5PB+PC的最小值为5故选A【点睛】本题主要考查了线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等的性质是解题的关键.8B【分析】根据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BCCD的对称点A′A″,即可得出∠AA′E+∠A″=∠HAA′=70°,进而得出∠EAA′+∠A″AF=70°,即可得出答案.【详解】解:作A关于BCCD的对称点A′A″,连接A′A″,交BCE,交CDF,则A′A″即为△AEF的周长最小值.作DA延长线AH∵∠C=70°∠B=∠D=90°∴∠DAB=110°∴∠HAA′=70°∴∠AA′E+∠A″=∠HAA′=70°∵∠EA′A=∠EAA′∠FAD=∠A″∴∠EAA′+∠A″AF=70°∴∠EAF=110°-70°=40°故选B【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出EF的位置是解题关键.9A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点EFCD上时,PEF的周长为PE+EF+FP=CD,此时周长最小,根据CD=4可得出COD是等边三角形,进而可求出α的度数.【详解】解:如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OAEOBF此时,PEF的周长最小.连接OCODPEPFP与点C关于OA对称,OA垂直平分PC∴∠COA=∠AOPPE=CEOC=OP同理,可得DOB=∠BOPPF=DFOD=OP∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=αOC=OD=OP=4∴∠COD=2α∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=4OC=OD=CD=4∴△COD是等边三角形,∴2α=60°α=30°故选:A【点睛】本题主要考查了最短路径问题,本题找到点EF的位置是解题的关键.要使PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.10【分析】作A关于OB的对称点D,连接EDOBP,连接AP,过DDN⊥OAN,则此时PA+PC的值最小,求出AMAD,再求出DNEN,根据勾股定理求出ED,即可得出答案.【详解】作A关于OB的对称点D,连接EDOBP,连接AP,过DDN⊥OAN则此时PA+PC的值最小,∵DP=PA∴PA+PE=PD+PE=EDA的坐标为(40),∠AOB=30°∴OA=4∴AM=OA=2∴AD=2×2=4∵∠AMB=90°∠B=60°∴∠BAM=30°∵∠DNO=∠OAB=90°∴DN∥AB∴∠NDA=∠BAM=30°∴AN=AD=2,由勾股定理得:DN===2∵E10),∴EN=4﹣1﹣2=1RtDNE中,由勾股定理得:DE===PA+PC的最小值是故答案为:【点睛】本题考查了轴对称确定最短路线问题,坐标与图形性质,含30度角的直角三角形的性质,勾股定理的应用,熟练掌握最短路径的确定方法找出点P的位置以及表示PA+PE的最小值的线段是解题的关键.116【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EPCP的值,从而找出其最小值求解.【详解】解:作点E关于AD的对称点F,连接CF∵△ABC是等边三角形,ADBC边上的中垂线,E关于AD的对应点为点FCF就是EP+CP的最小值.∵△ABC是等边三角形,EAC边的中点,FAB的中点,CF=AD=6EP+CP的最小值为6故答案为6【点睛】本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.128【分析】连接ADAM,由EF是线段AB的垂直平分线,得到AM=BM,则BDM的周长=BD+BM+DM=AM+DM+BD,要想BDM的周长最小,即要使AM+DM的值最小,故当AMD三点共线时,AM+DM最小,即为AD,由此再根据三线合一定理求解即可.【详解】解:如图所示,连接ADAMEF是线段AB的垂直平分线,AM=BM∴△BDM的周长=BD+BM+DM=AM+DM+BD要想BDM的周长最小,即要使AM+DM的值最小,AMD三点共线时,AM+DM最小,即为ADAB=ACDBC的中点,ADBCAD=6∴△BDM的周长最小值=AD+BD=8故答案为:8【点睛】本题主要考查了线段垂直平分线的性质,三线合一定理,解题的关键在于能够根据题意得到当AMD三点共线时,AM+DM最小,即为AD1318【分析】首先明确要使得PMB周长最小,即使得PM+PB最小,再根据翻折的性质可知PM=PC,从而可得满足PC+PB最小即可,根据两点之间线段最短确定BC即为最小值,从而求解即可.【详解】解:由翻折的性质可知,AM=ACPM=PCM点为AB上一个固定点,则BM长度固定,PMB周长=PM+PB+BM要使得PMB周长最小,即使得PM+PB最小,PM=PC满足PC+PB最小即可,显然,当PBC三点共线时,满足PC+PB最小,如图所示,此时,P点与D点重合,PC+PB=BCPMB周长最小值即为BC+BM此时,作DSABS点,DTAC延长线于T点,AQBC延长线于Q点,由题意,ADBAC的角平分线,DS=DT即:解得:AB=14AM=AC=6BM=14-6=8PMB周长最小值为BC+BM=3+7+8=18故答案为:18【点睛】本题考查翻折的性质,以及最短路径问题等,掌握翻折的基本性质,利用角平分线的性质进行推理求解,理解并熟练运用两点之间线段最短是解题关键.1416【分析】作PEEF,在PF上截取PC=8,连接QCB,作BAA,此时PA+AB+BQ最短.作QDPFD.在RtPQD中,由勾股定理可求得DQ的长;易证四边形ABCP是平行四边形,由平行四边形的性质及勾股定理可求得结果.【详解】作PEEF,在PF上截取PC=8,连接QCB,作BAA,此时PA+AB+BQ最短.作QDPFDRtPQD中,∵∠D=PQ=PD=18DQ= =AB=PC=8ABPC四边形ABCP是平行四边形,PA=BCCD=10PA+BQ=CB+BQ=QC= ==16故答案为:16【点睛】本题考查了轴对称最短路线问题,平行线的性质,平行四边形的判定与性质,勾股定理等知识.15【分析】y轴上取点E,使BECD1,则四边形BCDE为平行四边形,根据勾股定理得到AB,作点A关于直线x1的对称点A',得到A'ED三点共线时,AD+DE最小值为A'E的长,根据勾股定理求出A'E,即可得解;【详解】解:如图,在y轴上取点E,使BECD1,则四边形BCDE为平行四边形,B04),A(﹣10),OB4OA1OE3AB作点A关于直线x1的对称点A'A'30),ADA'DAD+DEA'D+DE,即A'ED三点共线时,AD+DE最小值为A'E的长,RtA'OE中,由勾股定理得A'EC四边形ABCD最小值=AB+CD+BC+ADAB+CD+A'E+1+故答案为:【点睛】本题主要考查了轴对称最短路线问题、勾股定理、位置与坐标,准确分析作图计算是解题的关键.163【分析】连接PC,则BP=CP=CP-PE,当点P与点A重合时,CP-PE=CE,进而即可求解.【详解】解:连接PC在等边中,P的中线上的动点,ADBC的中垂线,BP=CP=CP-PE中,CP-PECE当点P与点A重合时,CP-PE=CEE边的中点,的最大值=6÷2=3故答案是:3【点睛】本题主要考查等边三角形的性质,三角形三边长关系,连接CP,得到=CP-PE,是解题的关键.1780【分析】作点A关于BCCD的对称点A1A2,根据轴对称确定最短路线问题,连接A1A2分别交BCDC于点MN,利用三角形的内角和定理列式求出A1+∠A2,再根据轴对称的性质和角的和差关系即可得MAN【详解】如图,作点A关于BCCD的对称点A1A2,连接A1A2分别交BCDC于点MN,连接AMAN,则此时△AMN的周长最小,∵∠BCD50°,∠B=∠D90°,∴∠BAD360°﹣90°﹣90°﹣50°=130°,∴∠A1+A2180°﹣130°=50°,∵点A关于BCCD的对称点为A1A2NANA2MAMA1∴∠A2=∠NAD,∠A1=∠MAB∴∠NAD+MAB=∠A1+A250°,∴∠MAN=∠BAD﹣(∠NAD+MAB130°﹣50°80°,故答案为:80【点睛】本题考查了轴对称的最短路径问题,利用轴对称将三角形周长问题转化为两点间线段最短问题是解决本题的关键.1812【分析】如图1中,过点PPHBC于点H.求出PH2,推出点PBC的中垂线上运动,由翻折变换的性质可知,BPBP,推出|AP′﹣PB||AP′﹣BP′|≥AB4,推出当ABP共线时,|AP′﹣PB|的值最小,如图2中,设BC的中垂线交AC于点M,交AB于点N.则NMAMMC2PNPP4,求出PM,即可解决问题.【详解】解:如图1中,过点PPHBC于点HABCB4ACB90°ABBC4SBCP4PH4PH2PBC的中垂线上运动,由翻折变换的性质可知,BPBP∴|AP′﹣PB||AP′﹣BP′|≥AB4ABP共线时,|AP′﹣PB|的值最小,如图2中,BC的中垂线交AC于点M,交AB于点N.则NMAMMC2PNPP4PM4+26SACPAC×PM4×612故答案为:12【点睛】本题考查翻折变换,等腰直角三角形的性质,三角形的面积等知识,解题的关键是正确寻找点P的运动轨迹,属于中考填空题中的压轴题.19【分析】如图把点A向右平移1个单位得到E11),作点E关于x轴的对称点F1-1),连接BFBFx轴的交点即为点Q,此时AP+PQ+QB的值最小,求出直线BF的解析式,即可解决问题.【详解】解:如图把点4向右平移1个单位得到E11),作点E关于x轴的对称点F1-1),连接BFBFx轴的交点即为点Q,此时4P+PQ+QB的值最小.设最小BF的解析式为y=kx+b,则有解得直线BF的解析式为y=x-2y=0,得到x=2.∴Q2.0故答案为(20.【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型2010【分析】延长于点,过点B,由题意可知,即说明当点P运动到点时,最大,即为的长最后根据勾股定理求出的长即可.【详解】解:如图,延长于点,过点B当点P运动到点时,最大,即为的长的最大值等于10故答案为:10【点睛】本题考查三角形三边关系的应用,勾股定理.正确作出辅助线,并理解当点P运动到点时,最大,即为的长是解题关键.2115°/15【分析】作点B关于MN的对称点D,连接ADMNP,连接BPCD,先证明BCD是等边三角形,从而得到AC=CDACDACB +∠BCD150°,进而求得CDP15°,根据轴对称性可得CBP的度数.【详解】如图,作点B关于MN的对称点D,连接ADMNP,连接BPCDB与点D是关于MN的对称点,BCN30°BC=CDBCD60°BCD是等边三角形,∵∠ACB90°ACBCAC=CDACDACB +∠BCD150°∴∠CDP15°B与点D是关于MN的对称点,,且BCD是等边三角形,由等边三角形的轴对称性可知:CBP=∠CDP=15°故答案为:15°【点睛】本题主要考查了等腰直角三角形和等边三角形的性质,轴对称最短线路问题等知识,明确AP+BP的最小值为AD长是解题的关键.225【分析】作点关于射线的对称点,连接B'P.则是等边三角形,在中,,当在同一直线上时,取最大值,即为5.所以的最大值是5【详解】解:如图,作点关于射线的对称点,连接B'P是等边三角形,中,在同一直线上时,取最大值,即为5的最大值是5故答案为:5【点睛】本题考查了线段之差的最小值问题,正确作出点B的对称点是解题的关键23          【分析】作点A关于直线MN的对称点A,连接AB交直线MN于点P,过点A作直线AEBD的延长线于点E,再根据勾股定理求出AB的长就是PAPB的最小值;延长ABMN于点P,此时PAPBAB,由三角形三边关系可知AB|PAPB|,故当点P运动到P点时|PAPB|最大,作BEAM,由勾股定理即可求出AB的长就是|PAPB|的最大值.进一步代入求得答案即可.【详解】解:如图,作点A关于直线MN的对称点A,连接AB交直线MN于点P则点P即为所求点.过点A作直线AEBD的延长线于点E,则线段AB的长即为PAPB的最小值.AC8BD5CD4AC8BE8513AECD4ABPAPB的最小值是a如图,延长ABMN于点PPAPBABAB|PAPB|当点P运动到P点时,|PAPB|最大,BD5CD4AC8过点BBEAC,则BECD4AEACBD8−53AB5∴|PAPB|5为最大,b5a2b2185−25160故答案为:160【点睛】本题考查的是最短线路问题及勾股定理,熟知两点之间线段最短及三角形的三边关系是解答此类问题的关键.24(1)(2)图见解析, 【分析】(1)作点A关于的对称点,连接P,此时的值最小.连接,先根据勾股定理求出的长,再判断出,根据勾股定理即可得出结论;2)作点C关于直线的对称点,作NM,连接,此时最小为的长,根据等边三角形的性质和含角的直角三角形的性质解答即可.【详解】(1)解:如图2所示,作点A关于的对称点,连接P,此时的值最小.连接由勾股定理得,的中点,的最小值为故答案为: 2)解:如图3,作点C关于直线的对称点,作NM,连接,则为等边三角形,的最小值为【点睛】本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段.25.作图见解析,理由见解析【分析】先确定与河等宽,且垂直河岸,连接,与河岸的交点就是点C,过点C垂直河岸,交另一河岸于点D即可得出答案.【详解】解:如图,先确定与河等宽,且垂直河岸,连接,与河岸的交点就是点D,过点D垂直河岸,交另一河岸于点C,连.由作图过程可知,四边形为平行四边形,平移至即可得到线段,两点之间,线段最短,由于河宽不变,即为桥.【点睛】本题考查的是作图——平移变换以及利用轴对称解决最短路径问题,熟知图形平移不变性的性质是解答此题的关键.26.(1CDBE始终相等;(25;(37【分析】(1)证明ADC≌△CEBSAS)即可;2)根据DEBC,得到AD=AE,即t=10-t,求出t即可;3)作D点关于BM的对称点D'BC于点D',连接D'E,交BM于点P,则DP+PE=D'E,证明CDE为等边三角形,即可求D'E的值.【详解】解:(1)由已知可得AD=tEC=tAD=CE∵△ABC是等边三角形∴∠A=∠ACB=60°BC=AC∴△ADC≌△CEBSAS),BE=CDCDBE始终相等;2DEBCAD=AEAB=AC=10t=10-tt=53BMACBM平分ABCD点关于BM的对称点D'BC于点D',连接D'E,交BM于点PDP=D'PDP+PE=D'P+PE=D'Et=7AE=BD=BD′=3AD=CE=7CD′=7,又C=60°∴△CDE为等边三角形,D'E=CD′=7PD+PE的最小值为7【点睛】本题考查动点及等边三角形的性质,利用轴对称性确定线段DP+PE=D'E,再由等边三角形的性质求解D'E的长是解题的关键.27.(1;(2【分析】(1)点在一三象限的角平分线上,可得:解方程求解 得到的坐标,再画出符合题意的图形,分两种情况求解的坐标即可得到答案;2)记 由直线的对称轴,可得关于对称,连接 交直线此时最大,再利用两点间的距离公式可得最大值,再求解的解析式,求的交点的坐标即可.【详解】解:(1在一三象限的角平分线上, 如图,当的上方时,轴, 的下方时,轴, 综上: 2)如图,记 由直线的对称轴,关于对称,连接 交直线 连接 此时取最大值, 的最大值为: 的解析式为: 解得: 的解析式为:解得: 【点睛】本题考查的是平面直角坐标系内一三象限,二四象限的角平分线上点的坐标特点,平行于坐标轴的两点之间的距离,轴对称的性质,两点间的距离公式,利用待定系数法求解一次函数的解析式,求解函数的交点坐标,掌握以上知识是解题的关键. 

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map