所属成套资源:2024年高考数学第一轮复习专题训练资料
2024年高考数学第一轮复习专题训练81练第七章 §7.7 向量法求空间角
展开
这是一份2024年高考数学第一轮复习专题训练81练第七章 §7.7 向量法求空间角,共3页。
1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若PA=AB,求PB与AC所成角的余弦值. 2.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值. 3.如图①,在高为6的等腰梯形ABCD中,AB∥CD,且CD=6,AB=12,将它沿对称轴OO1折起,使平面ADO1O⊥平面BCO1O,如图②,点P为BC的中点,点E在线段AB上(不同于A,B两点),连接OE并延长至点Q,使AQ∥OB.(1)证明:OD⊥平面PAQ;(2)若BE=2AE,求平面CBQ与平面ABQ夹角的余弦值. 4.(2022·新高考全国Ⅱ改编)如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E为PB的中点.(1)证明:OE∥平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求平面AEC与平面AEB夹角的正弦值. 5.(2023·莆田模拟)如图,在四棱锥P-ABCD中,底面ABCD是菱形,F为PD的中点.(1)证明:PB∥平面AFC;(2)请从下面三个条件中任选一个,补充在下面的横线上,并作答.①∠ABC=;②BD=AC;③PC与平面ABCD所成角的大小为.若PA⊥平面ABCD,AB=AP=2,且________,求平面ACF与平面ACD夹角的余弦值. 6.如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.
相关试卷
这是一份2024年高考数学第一轮复习专题训练81练第七章 §7.6 空间向量的概念与运算,共4页。试卷主要包含了已知a=,b=,A,B等内容,欢迎下载使用。
这是一份2024年高考数学第一轮复习专题训练第七章 §7.7 向量法求空间角,共6页。试卷主要包含了异面直线所成的角,直线与平面所成的角,平面与平面的夹角等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习讲练测第7章§7.7向量法求空间角(含解析),共20页。试卷主要包含了异面直线所成的角,直线与平面所成的角,平面与平面的夹角等内容,欢迎下载使用。