资料中包含下列文件,点击文件名可预览资料内容
还剩10页未读,
继续阅读
第06讲 正多边形和圆(知识解读+真题演练+课后巩固)-2023-2024学年九年级数学上册《知识解读•题型专练》(人教版)
展开
这是一份第06讲 正多边形和圆(知识解读+真题演练+课后巩固)-2023-2024学年九年级数学上册《知识解读•题型专练》(人教版),文件包含第06讲正多边形和圆知识解读+真题演练+课后巩固原卷版docx、第06讲正多边形和圆知识解读+真题演练+课后巩固解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
第06讲 正多边形和圆了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.知识点1 圆内正多边形的计算(1)正三角形 在⊙中△是正三角形,有关计算在中进行:;(2)正四边形同理,四边形的有关计算在中进行,:(3)正六边形同理,六边形的有关计算在中进行,.知识点2 与正多边形有关的概念 1、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。2、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。3、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。4、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。知识点3 正多边形的对称性 1、正多边形的轴对称性正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。2、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。3、正多边形的画法先用量角器或尺规等分圆,再做正多边形。 【题型1 正多边形与圆求角度】【典例1】(2023•青羊区校级模拟)如图,正六边形ABCDEF内接于⊙O,∠ADB的度数是( )A.20° B.30° C.45° D.60°【变式1-1】(2023•惠水县一模)如图,边长相等的正五边形、正六边形的一边重合,则∠1的度数为( )A.10° B.12° C.20° D.22°【变式1-2】(2022秋•曲周县期末)已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数等于( )A.45° B.60° C.35° D.55°【变式1-3】(2023•新市区校级一模)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为( )A.150° B.144° C.135° D.120°【题型2正多边形与圆求线段长度】【典例2】(2023•龙港市二模)如图,要拧开一个边长为a的正六边形螺帽,则扳手张开的开口b至少为( )A.2a B. C. D.【变式2-1】(2023春•鼓楼区校级期中)如图,A、B、C、D为一个正多边形的顶点,若∠ADB=15°,则该正多边形的边数为( )A.9 B.10 C.11 D.12【变式2-2】(2022秋•烟台期末)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为( )A. B.3 C. D.【变式2-3】(2023•苏州二模)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,过O作OM垂直AB,交AB于点M,则OM的长为 .【题型3正多边形与圆求半径】【典例3】(2022秋•巩义市期末)如图,已知⊙O的内接正方形ABCD的边长为1,则⊙O的半径为( )A. B. C.1 D.【变式3-1】(2022秋•慈溪市期末)如图,正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是( )A.1 B. C.2 D.【变式3-2】(2023•宜春一模)若正方形的边长为8,则其外接圆的半径是 .【题型4正多边形与圆求面积】【典例4】(2022秋•呈贡区期末)正六边形的边长为6cm,则该正六边形的内切圆面积为( )A.48πcm2 B.36πcm2 C.24πcm2 D.27πcm2【变式4-1】(2023•大冶市一模)如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为( )A.4m2 B.12m2 C.24m2 D.24m2【变式4-2】(2023•南山区二模)刘徽在《九章算术注》中首创“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元.某同学在学习“割圆术”的过程 中,作了一个如图所示的圆内接正八边形.若⊙O的半径为1,则这个圆内接正八边形的面积为( )A.π B.2π C. D.【变式4-3】(2023•济源一模)如图,正六边形ABCDEF,A(﹣2,0),D(2,0),点P从点A出发,沿A→B→C→D→E→F→A以每秒1个单位长度的速度运动,当运动到第2023秒时,△AOP的面积为( )A. B. C. D.1【题型5正多边形与圆求周长】【典例5】(2023•钦州一模)如图,若一个正六边形的对角线AB的长为10,则正六边形的周长( )A.5 B.6 C.30 D.36【变式5-1】(2023春•余姚市期中)一个边长为1的正多边形的每个外角的度数是36°,则这个正多边形的周长是( )A.1 B.10 C.5 D.【变式5-2】(2022秋•北辰区校级期末)边心距为3的正六边形的周长为( )A.18 B. C. D.【变式5-3】(2022秋•河西区期末)六个带30°角的直角三角板拼成一个正六边形,直角三角板的最短边为10,求中间正六边形的周长 .【题型6正多边形与直角坐标系综合】【典例6】(2023•西和县一模)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受到中国人的浪漫,如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,“雪花”中心与原点重合,C,F在y轴上,则顶点B的坐标为( )A.(4,2) B.(4,4) C. D.【变式6-1】(2023•洛龙区一模)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,﹣3),则顶点C的坐标为( )A.) B. C.D.【变式6-2】(2022秋•绵阳期末)如图,在平面直角坐标系中,正六边形OABCDE的边长是4,则它的内切圆圆心M的坐标是( )A. B. C. D.(2,4)声明:试题解析著作权属所有,未经书面同意,得复制发布日期:2023/6/26 15:16:;用户:gaga;邮箱:1837956;学 :189077131.(2023•临沂)将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是( )A.60° B.90° C.180° D.360°2.(2023•内江)如图,正六边形ABCDEF内接于⊙O,点P在上,点Q是的中点,则∠CPQ的度数为( )A.30° B.45° C.36° D.60°3.(2023•安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=( )A.60° B.54° C.48° D.36°4.(2023•自贡)第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角∠ACB=15°,算出这个正多边形的边数是( )A.9 B.10 C.11 D.125.(2022•绵阳)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,﹣3),则顶点C的坐标为( )(2﹣2,3) B.(0,1+2)C.(2﹣,3) D.(2﹣2,2+)6.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为( )A.3 B. C. D.31.(2022秋•灵宝市期末)边长为4的正方形内接于⊙O,则⊙O的半径是( )A. B.2 C.2 D.42.(2023•梁溪区二模)如图所示,A、B、C、D是一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD的度数为( )A.14° B.40° C.30° D.15°3.(2023春•汉寿县期末)若一个正多边形的一个内角的度数为144°,则这个正多边形的边数为( )A.7 B.8 C.9 D.104.(2023•崆峒区校级三模)平凉市崆峒山塔群是研究院东地区砖石建筑艺术的宝贵实物资料,图①是位于崆峒山灵龟台西的灵秘塔,塔为石基砖砌身,呈六角六面四级阶状尖顶塔,图②是灵秘塔某层的平面示意图,若将其抽象为正六边形,则a的度数为( )A.45° B.50° C.60° D.72°5.(2023•玉林一模)如图,在由边长相同的7个正六边形组成的网格中,点A,B在格点上.再选择一个格点C,使△ABC是以AB为腰的等腰三角形,符合点C条件的格点个数是( )A.1 B.2 C.3 D.46.(2023•夏津县一模)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是( )A.7个 B.8个 C.9个 D.10个7.(2023•咸宁模拟)如图,正五边形ABCDE内接于⊙O,其半径为1,作OF⊥BC交⊙O于点F,则的长为( )A.π B. C. D.8.(2022•青岛)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为( )A.30° B.36° C.45° D.60°9.(2022秋•荔湾区校级期末)如图.点O是正五边形ABCDE的中心,⊙O是正五边形的外接圆,∠ADE的度数为( )A.30° B.32° C.36° D.40°10.(2022•思明区校级二模)如图,正三角形PMN的顶点分别是正六边形ABCDEF三边的中点,则三角形PMN与六边形ABCDEF的面积之比( )A.1:2 B.1:3 C.2:3 D.3:811.(2022•桐梓县模拟)如图,⊙O与正六边形OABCDE的边OA,OE分别交于点F,G,点M为劣弧FG的中点.若FM=4.则点O到FM的距离是( )A.4 B. C. D.12.(2023春•高邑县期末)定义:如果几个全等的正n边形依次有一边重合,排成一圈,中间可以围成一个正多边形,那么我们称作正n边形的环状连接.如图1,我们可以看作正八边形的环状连接,中间围成一个正方形.(1)若正六边形作环状连接,如图2,中间可以围成的正多边形的边数为 ;(2)若边长为a的正n边形作环状连接,中间围成的是等边三角形,则这个环状连接的外轮廓长为 .(用含a的代数式表示)13.(2023•兴庆区校级一模)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2023次旋转结束时,点A的坐标为 .14.(2023•新城区校级二模)如图,已知⊙O的内接正六边形ABCDEF的边心距OM是,则正六边形的边长为 .15.(2023•镇江一模)在九年级《数学实验手册》中,我们探究了最小覆盖圆与图形之间的关系.现有如图所示的等边三角形△ABC,边长为3,若分别以顶点A、B、C为圆心作三个等圆,这三个等圆能完全覆盖△ABC,则所作等圆的最小半径是 .16.(2023•抚州一模)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有 .
第06讲 正多边形和圆了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.知识点1 圆内正多边形的计算(1)正三角形 在⊙中△是正三角形,有关计算在中进行:;(2)正四边形同理,四边形的有关计算在中进行,:(3)正六边形同理,六边形的有关计算在中进行,.知识点2 与正多边形有关的概念 1、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。2、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。3、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。4、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。知识点3 正多边形的对称性 1、正多边形的轴对称性正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。2、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。3、正多边形的画法先用量角器或尺规等分圆,再做正多边形。 【题型1 正多边形与圆求角度】【典例1】(2023•青羊区校级模拟)如图,正六边形ABCDEF内接于⊙O,∠ADB的度数是( )A.20° B.30° C.45° D.60°【变式1-1】(2023•惠水县一模)如图,边长相等的正五边形、正六边形的一边重合,则∠1的度数为( )A.10° B.12° C.20° D.22°【变式1-2】(2022秋•曲周县期末)已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数等于( )A.45° B.60° C.35° D.55°【变式1-3】(2023•新市区校级一模)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为( )A.150° B.144° C.135° D.120°【题型2正多边形与圆求线段长度】【典例2】(2023•龙港市二模)如图,要拧开一个边长为a的正六边形螺帽,则扳手张开的开口b至少为( )A.2a B. C. D.【变式2-1】(2023春•鼓楼区校级期中)如图,A、B、C、D为一个正多边形的顶点,若∠ADB=15°,则该正多边形的边数为( )A.9 B.10 C.11 D.12【变式2-2】(2022秋•烟台期末)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为( )A. B.3 C. D.【变式2-3】(2023•苏州二模)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,过O作OM垂直AB,交AB于点M,则OM的长为 .【题型3正多边形与圆求半径】【典例3】(2022秋•巩义市期末)如图,已知⊙O的内接正方形ABCD的边长为1,则⊙O的半径为( )A. B. C.1 D.【变式3-1】(2022秋•慈溪市期末)如图,正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是( )A.1 B. C.2 D.【变式3-2】(2023•宜春一模)若正方形的边长为8,则其外接圆的半径是 .【题型4正多边形与圆求面积】【典例4】(2022秋•呈贡区期末)正六边形的边长为6cm,则该正六边形的内切圆面积为( )A.48πcm2 B.36πcm2 C.24πcm2 D.27πcm2【变式4-1】(2023•大冶市一模)如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为( )A.4m2 B.12m2 C.24m2 D.24m2【变式4-2】(2023•南山区二模)刘徽在《九章算术注》中首创“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元.某同学在学习“割圆术”的过程 中,作了一个如图所示的圆内接正八边形.若⊙O的半径为1,则这个圆内接正八边形的面积为( )A.π B.2π C. D.【变式4-3】(2023•济源一模)如图,正六边形ABCDEF,A(﹣2,0),D(2,0),点P从点A出发,沿A→B→C→D→E→F→A以每秒1个单位长度的速度运动,当运动到第2023秒时,△AOP的面积为( )A. B. C. D.1【题型5正多边形与圆求周长】【典例5】(2023•钦州一模)如图,若一个正六边形的对角线AB的长为10,则正六边形的周长( )A.5 B.6 C.30 D.36【变式5-1】(2023春•余姚市期中)一个边长为1的正多边形的每个外角的度数是36°,则这个正多边形的周长是( )A.1 B.10 C.5 D.【变式5-2】(2022秋•北辰区校级期末)边心距为3的正六边形的周长为( )A.18 B. C. D.【变式5-3】(2022秋•河西区期末)六个带30°角的直角三角板拼成一个正六边形,直角三角板的最短边为10,求中间正六边形的周长 .【题型6正多边形与直角坐标系综合】【典例6】(2023•西和县一模)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受到中国人的浪漫,如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,“雪花”中心与原点重合,C,F在y轴上,则顶点B的坐标为( )A.(4,2) B.(4,4) C. D.【变式6-1】(2023•洛龙区一模)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,﹣3),则顶点C的坐标为( )A.) B. C.D.【变式6-2】(2022秋•绵阳期末)如图,在平面直角坐标系中,正六边形OABCDE的边长是4,则它的内切圆圆心M的坐标是( )A. B. C. D.(2,4)声明:试题解析著作权属所有,未经书面同意,得复制发布日期:2023/6/26 15:16:;用户:gaga;邮箱:1837956;学 :189077131.(2023•临沂)将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是( )A.60° B.90° C.180° D.360°2.(2023•内江)如图,正六边形ABCDEF内接于⊙O,点P在上,点Q是的中点,则∠CPQ的度数为( )A.30° B.45° C.36° D.60°3.(2023•安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=( )A.60° B.54° C.48° D.36°4.(2023•自贡)第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角∠ACB=15°,算出这个正多边形的边数是( )A.9 B.10 C.11 D.125.(2022•绵阳)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,若AB与x轴垂直,顶点A的坐标为(2,﹣3),则顶点C的坐标为( )(2﹣2,3) B.(0,1+2)C.(2﹣,3) D.(2﹣2,2+)6.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为( )A.3 B. C. D.31.(2022秋•灵宝市期末)边长为4的正方形内接于⊙O,则⊙O的半径是( )A. B.2 C.2 D.42.(2023•梁溪区二模)如图所示,A、B、C、D是一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD的度数为( )A.14° B.40° C.30° D.15°3.(2023春•汉寿县期末)若一个正多边形的一个内角的度数为144°,则这个正多边形的边数为( )A.7 B.8 C.9 D.104.(2023•崆峒区校级三模)平凉市崆峒山塔群是研究院东地区砖石建筑艺术的宝贵实物资料,图①是位于崆峒山灵龟台西的灵秘塔,塔为石基砖砌身,呈六角六面四级阶状尖顶塔,图②是灵秘塔某层的平面示意图,若将其抽象为正六边形,则a的度数为( )A.45° B.50° C.60° D.72°5.(2023•玉林一模)如图,在由边长相同的7个正六边形组成的网格中,点A,B在格点上.再选择一个格点C,使△ABC是以AB为腰的等腰三角形,符合点C条件的格点个数是( )A.1 B.2 C.3 D.46.(2023•夏津县一模)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是( )A.7个 B.8个 C.9个 D.10个7.(2023•咸宁模拟)如图,正五边形ABCDE内接于⊙O,其半径为1,作OF⊥BC交⊙O于点F,则的长为( )A.π B. C. D.8.(2022•青岛)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为( )A.30° B.36° C.45° D.60°9.(2022秋•荔湾区校级期末)如图.点O是正五边形ABCDE的中心,⊙O是正五边形的外接圆,∠ADE的度数为( )A.30° B.32° C.36° D.40°10.(2022•思明区校级二模)如图,正三角形PMN的顶点分别是正六边形ABCDEF三边的中点,则三角形PMN与六边形ABCDEF的面积之比( )A.1:2 B.1:3 C.2:3 D.3:811.(2022•桐梓县模拟)如图,⊙O与正六边形OABCDE的边OA,OE分别交于点F,G,点M为劣弧FG的中点.若FM=4.则点O到FM的距离是( )A.4 B. C. D.12.(2023春•高邑县期末)定义:如果几个全等的正n边形依次有一边重合,排成一圈,中间可以围成一个正多边形,那么我们称作正n边形的环状连接.如图1,我们可以看作正八边形的环状连接,中间围成一个正方形.(1)若正六边形作环状连接,如图2,中间可以围成的正多边形的边数为 ;(2)若边长为a的正n边形作环状连接,中间围成的是等边三角形,则这个环状连接的外轮廓长为 .(用含a的代数式表示)13.(2023•兴庆区校级一模)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2023次旋转结束时,点A的坐标为 .14.(2023•新城区校级二模)如图,已知⊙O的内接正六边形ABCDEF的边心距OM是,则正六边形的边长为 .15.(2023•镇江一模)在九年级《数学实验手册》中,我们探究了最小覆盖圆与图形之间的关系.现有如图所示的等边三角形△ABC,边长为3,若分别以顶点A、B、C为圆心作三个等圆,这三个等圆能完全覆盖△ABC,则所作等圆的最小半径是 .16.(2023•抚州一模)蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有 .
相关资料
更多