初中数学人教版九年级上册24.1.2 垂直于弦的直径学案及答案
展开第02讲 圆-垂径定理
1.掌握垂径定理及其推论;
2.利用垂径定理及其推论进行简单的计算和证明.
知识点1 垂径定理
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
常见辅助线做法(考点):1)过圆心,作垂线,连半径,造,用勾股,求长度;
2)有弧中点,连中点和圆心,得垂直平分
知识点2 垂径定理的应用
经常为未知数,结合方程于勾股定理解答
【题型1 运用垂径定理直接求线段的长度】
【典例1】(2023•南海区校级模拟)如图,线段CD是⊙O的直径,CD⊥AB于点E,若AB长为16,OE长为6,则⊙O半径是( )
A.5 B.6 C.8 D.10
【变式1-1】(2023春•开福区校级月考)如图,⊙O的半径为5,弦AB=8,OC⊥AB于点C,则OC的长为( )
A.1 B.2 C.3 D.4
【变式1-2】(澄城县期末)如图,⊙O中,OD⊥弦AB于点C,交⊙O于点D,OB=13,AB=24,则OC的长为( )
A.4 B.5 C.6 D.7
【变式1-3】(2023•宿州模拟)如图,AB是⊙O的直径,弦CD⊥AB于点E.若OE=CE=2,则BE的长为( )
A. B. C.1 D.2
【题型2 垂径定理在格点中的运用】
【典例2】(2023•平遥县二模)如图所示,一圆弧过方格的格点AB,试在方格中建立平面直角坐标系,使点A的坐标为(0,4),则该圆弧所在圆的圆心坐标是( )
A.(﹣1,2) B.(1,﹣1) C.(﹣1,1) D.(2,1)
【变式2-1】(2022秋•兴义市期中)如图,M(0,﹣3)、N(0,﹣9),半径为5的⊙A经过M、N,则A点坐标为( )
A.(﹣5,﹣6) B.(﹣4,﹣5) C.(﹣6,﹣4) D.(﹣4,﹣6)
【变式2-2】(2022秋•西城区校级期中)如图,在平面直角坐标系中,一条圆弧经过A(2,2),B(4,0),O三点,那么这条圆弧所在圆的圆心为图中的( )
A.点D B.点E C.点F D.点G
【变式2-3】(2022秋•南开区校级期末)如图所示,在平面直角坐标系中,已知一圆弧过正方形网格的格点A,B,C,已知A点的坐标为(﹣3,5),B点的坐标为(1,5),C点的坐标为(4,2),则该圆弧所在圆的圆心坐标为 .
【题型3 垂径定理与方程的综合应用】
【典例3】(2023•寻乌县一模)如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EB.若AB=4,CD=1,则EB的长为( )
A.2 B.3 C.4 D.5
【变式3-1】(2021秋•瑶海区期末)如图,在⊙O中,OE⊥弦AB于点E,EO的延长线交弦AB所对的优弧于点F,若AB=FE=8,则⊙O的半径为( )
A.5 B.6 C.4 D.2
【变式3-2】(2022秋•宜春期末)已知:如图,⊙O的直径AC与弦BD(不是直径)交于点E,若EC=1,DE=EB=2,求AB的长.
【题型4 同心圆与垂井定理综合】
【典例4】(2022秋•梁山县期末)如图,在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.
(1)求证:AC=BD;
(2)连接OA、OC,若OA=6,OC=4,∠OCD=60°,求AC的长.
【变式4-1】(2022秋•嘉兴期中)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).
(1)求证:AC=BD;
(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.
【变式4-2】(2022秋•浦江县校级月考)如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,若AB=10cm,CD=6cm.
(1)求AC的长;
(2)若大圆半径为13cm,求小圆的半径.
【题型5 垂径定理的实际应用】
【典例5】(2022秋•赣县区期末)如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,并且CD=4,EM=6,求⊙O的半径.
【变式5-1】(2022秋•信都区校级期末)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得的弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是( )
A.1米 B.米 C.3米 D.米
【变式5-2】(2023•武义县一模)如图,一个隧道的横截面,它的形状是以点O为圆心的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,EM=9,则⊙O的半径为( )
A.4 B.5 C.6 D.7
【变式5-3】(2023•桐乡市校级开学)一面墙上有一个矩形门洞,其中宽为1.5米,高为2米,现要将其改造成圆弧型门洞(如图),则改造后圆弧型门洞的最大高度是( )
A.2.25米 B.2.2米 C.2.15米 D.2.1米
【典例6】(2023•迎泽区校级一模)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.
(1)求圆弧所在的圆的半径r的长;
(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?
【变式6-1】(2021秋•恩施市校级期末)如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.
(1)求拱桥的半径;
(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过这座圆弧形拱桥并说明理由.
【变式6-2】(2022秋•鼓楼区期中)如图,一座石桥的主桥拱是圆弧形,某时刻测得水面AB宽度为6米,拱高CD(弧的中点到水面的距离)为1米.
(1)求主桥拱所在圆的半径;
(2)若水面下降1米,求此时水面的宽度.
【变式6-3】(2022秋•南宁期中)如图是某蔬菜基地搭建的一座蔬菜棚的截面,其为圆弧型,跨度AB(弧所对的弦)的长为3.2米,拱高(弧的中点到弦的距离)为0.8米.
(1)求该圆弧所在圆的半径;
(2)在距蔬菜棚的一端(点B)0.4米处竖立支撑杆EF,求支撑杆EF的高度.
1.(2021•鄂州)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是( )
A.1米 B.(4﹣)米 C.2米 D.(4+)米
2.(2021•凉山州)点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为( )
A.3cm B.4cm C.5cm D.6cm
3.(2021•青海)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为( )
A.1.0厘米/分 B.0.8厘米/分 C.1.2厘米/分 D.1.4厘米/分
4.(2022•长沙)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为 .
5.(2022•黑龙江)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为 .
6.(2021•黔东南州)小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得弧AB的中心C到AB的距离CD=1.6cm,AB=6.4cm,很快求得圆形瓦片所在圆的半径为 cm.
1.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
A.4 B.5 C.6 D.6
2.《九章算术》是我国古代第一部自成体系的数学专著,书中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深两寸,锯道长八寸,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深2寸(ED=2寸),锯道长8寸”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算圆形木材的直径AC是( )
A.5寸 B.8寸 C.10寸 D.12寸
3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若BE=CD=8,则⊙O的半径的长是( )
A.5 B.4 C.3 D.2
4.如图,一根排水管的截面是一个半径为5的圆,管内水面宽AB=8,则水深CD为( )
A.3 B.2 C. D.
5.如图是一个圆柱形的玻璃水杯,将其横放,截面是个半径为5cm的圆,杯内水面AB=8cm,则水深CD是( )
A.cm B.cm C.2cm D.3cm
6.如图,某同学准备用一根内半径为5cm的塑料管裁一个引水槽,使槽口宽度AB为8cm,则槽的深度CD为 cm.
7.“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的应用.例如古典园林中的门洞.如图,某地园林中的一个圆弧形门洞的高为2.5m,地面入口宽为1m,则该门洞的半径为 m.
8.“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸,则直径AB的长为 寸.
9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图,若水面宽AB=48cm,则水的最大深度为 cm.
10.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为 m.
11.为测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm),则该铁球的直径为 .
12.如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为 .
13.一条排水管的截面如图所示,已知排水管的半径OA=2m,水面宽AB=2.4m.某天下雨后,水管水面上升后的水面宽度为3.2m,则排水管水面上升了 m.
14.证明:垂直于弦的直径平分弦以及弦所对的两条弧.
已知:如图,AB是⊙O的直径,CD是⊙O的弦, .
求证: .
证明:
15.如图,OA=OB,AB交⊙O于点C,D,OE是半径,且OE⊥AB于点F.
(1)求证:AC=BD.
(2)若CD=8,EF=2,求⊙O的半径.
16.已知:如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点.
(1)求圆心O到AP的距离;
(2)求弦EF的长.
17.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.若A点的坐标为(0,4),C点的坐标为(6,2),
(1)根据题意,画出平面直角坐标系;
(2)在图中标出圆心M的位置,写出圆心M点的坐标 .
18.如图所示,要把残破的轮片复制完整,已知弧上的三点A,B,C.
(1)用尺规作图法找出所在圆的圆心;(保留作图痕迹,不写作法)
(2)设△ABC是等腰三角形,底边BC=8cm,腰AB=5cm,求圆片的半径R.
19.如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.
(1)求拱桥的半径;
(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.
初中数学人教版九年级上册23.2.2 中心对称图形导学案: 这是一份初中数学人教版九年级上册23.2.2 中心对称图形导学案,文件包含第02讲中心对称与中心对称图形知识解读+真题演练+课后巩固原卷版docx、第02讲中心对称与中心对称图形知识解读+真题演练+课后巩固解析版docx等2份学案配套教学资源,其中学案共44页, 欢迎下载使用。
数学九年级上册22.3 实际问题与二次函数导学案: 这是一份数学九年级上册22.3 实际问题与二次函数导学案,文件包含第08讲二次函数的实际应用知识解读+真题演练+课后巩固原卷版docx、第08讲二次函数的实际应用知识解读+真题演练+课后巩固解析版docx等2份学案配套教学资源,其中学案共59页, 欢迎下载使用。
初中数学人教版九年级上册24.4 弧长和扇形面积学案: 这是一份初中数学人教版九年级上册24.4 弧长和扇形面积学案,文件包含第07讲弧长扇形面积和圆锥的侧面积知识解读+真题演练+课后巩固原卷版docx、第07讲弧长扇形面积和圆锥的侧面积知识解读+真题演练+课后巩固解析版docx等2份学案配套教学资源,其中学案共59页, 欢迎下载使用。