2020-2021学年江苏省连云港市灌云县西片九年级上学期数学第一次月考试题及答案
展开
这是一份2020-2021学年江苏省连云港市灌云县西片九年级上学期数学第一次月考试题及答案,共15页。试卷主要包含了 已知方程x2﹣, 如图,外接圆的圆心坐标是等内容,欢迎下载使用。
1. 下列方程中,属于一元二次方程的是( )
A. x+1=0B. x2=2x﹣1
C. 2y﹣x=1D. x2+3=
【答案】B
【解析】
【分析】
利用一元二次方程的定义进行分析即可.
【详解】解:A、x+1=0是一元一次方程,故此选项不合题意;
B、x2=2x﹣1一元二次方程,故此选项符合题意;
C、含有2个未知数,2y﹣x=1不是一元二次方程,故此选项不合题意;
D、含有分式,x2+3=不是一元二次方程;故此选项不合题意.
故选:B.
【点睛】本题考查了一元二次方程的定义.判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否只含一个未知数且未知数的最高次数是2.
2. 已知方程x2﹣(k+1)x+3k=0的一个根是2,则k为( )
A. ﹣2B. ﹣3C. 3D. 1
【答案】A
【解析】
【分析】
根据题意,将根2代入方程中,解关于字母k的方程即可解题.
【详解】把代入方程得,
,即,
故选:A.
【点睛】本题考查一元二次方程的根,其中涉及一元一次方程的解法,是基础考点,难度较易,掌握相关知识是解题关键.
3. 用配方法解方程时,原方程变形为( )
A. B.
C. D.
【答案】C
【解析】
【分析】
方程整理后,配方得到结果,即可做出判断.
【详解】解:方程配方得:x2+6x+5+4-5=0,即(x+3)2=5.
故选:C.
【点睛】此题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.
4. 受益于电子商务的发展以及法治环境的改善等多重因素,“快递业”成为我国经济的一匹“黑马”2018年我国快递业务量为500亿件,2020年快递量预计将达到740亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是( )
A. 500(1+x)2=740B. 500(1+2x)=740
C. 500(1+x)=740D. 500(1﹣x)2=740
【答案】A
【解析】
【分析】
根据题意,设快递量平均每年增长率为x,则2019年的快递业务量为,2020年的快递业务量为,据此解题.
【详解】设快递量平均增长率为x,根据题意得:
,
故选:A.
【点睛】本题考查一元二次方程的应用—增长率问题,是重要考点,难度较易,掌握相关知识是解题关键.
5. 已知的直径是10,点到圆心的距离为4,则点与的位置关系是( )
A. 在圆外B. 在圆内C. 在圆上D. 无法确定
【答案】B
【解析】
【分析】
根据点与圆的位置关系判断即可.
【详解】∵点到圆心的距离,半径,
∴点与的位置关系是点在内.
故选:B.
【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
6. 如图,外接圆的圆心坐标是( )
A. (5,2)B. (2,3)C. (1,4)D. (0,0)
【答案】A
【解析】
【分析】
根据三角形各边的中垂线的交点为三角形外接圆的圆心,作出外接圆的圆心,进而即可得到坐标.
【详解】如图,作AB,BC的中垂线,交于点D,点D即为外接圆的圆心,坐标为(5,2).
故选A.
【点睛】
本题主要考查三角形外接圆的圆心,熟练掌握三角形外接圆的圆心是各边中垂线的交点,是解题的关键.
7. 如图,AB是⊙O的直径,C和D是⊙O上两点,连接AC、BC、BD、CD,若∠CDB=36°,则∠ABC=( )
A. 36°B. 44°C. 54°D. 72°
【答案】C
【解析】
【分析】
由同一个圆中,同弧所对的圆周角相等,解得,再由直径所对的圆周角是90°,结合余角的性质解题即可.
【详解】是的直径,
,
,
故选:C.
【点睛】本题考查圆的性质,涉及同弧所对的圆周角相等、直径所对的圆周角是90°、余角的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.
8. 如图,在半径为3的⊙O中,是直径,是弦,是的中点,与交于点.若是的中点,则的长是( )
A. B. C. D.
【答案】D
【解析】
【分析】
连接DO、DA、DC,设DO与AC交于点H,证明△DHE≌△BCE,得到DH=CB,同时OH是三角形ABC中位线,设OH=x,则BC=2x=DH,故半径DO=3x,解出x,最后在Rt△ACB中由勾股定理即可求解.
【详解】解:连接DO、DA、DC、OC,设DO与AC交于点H,如下图所示,
∵D是的中点,∴DA=DC,∴D在线段AC的垂直平分线上,
∵OC=OA,∴O在线段AC的垂直平分线上,
∴DO⊥AC,∠DHC=90°,
∵AB是圆的直径,∴∠BCA=90°,
∵E是BD的中点,∴DE=BE,且∠DEH=∠BEC,
∴△DHE≌△BCE(AAS),
∴DH=BC,
又O是AB中点,H是AC中点,
∴HO是△ABC的中位线,
设OH=x,则BC=DH=2x,
∴OD=3x=3,∴x=1,
即BC=2x=2,
在Rt△ABC中,.
故选:D.
【点睛】本题考查了圆周角定理、三角形全等、勾股定理等,属于综合题,熟练掌握其性质和定理是解决此题的关键
二.填空题(共8小题)
9. 把方程3x(x﹣2)=4(x+1)化为一元二次方程一般形式是_______;
【答案】3x2-10x-4=0.
【解析】
先把一元二次方程3x(x﹣2)=4(x+1)的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.
解:∵一元二次方程3x(x﹣2)=4(x+1)可化为3x2-6x-4x--4=0,∴化为一元二次方程的一般形式为3x2-10x-4=0.
10. 如图,CD是⊙O直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是_____.
【答案】28°.
【解析】
【分析】
根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,解方程可得答案.
【详解】解:由AB=OC,得AB=OB,∠A=∠AOB.
由BO=EO,得∠BEO=∠EBO.
由∠EBO是△ABO的外角,
得∠EBO=∠A+∠AOB=2∠A,∠BEO=∠EBO=2∠A.
由∠EOD是△AOE的外角,得∠A+∠AEO=∠EOD,
即∠A+2∠A=84°,
解得:∠A=28°.
故答案为28°.
【点睛】本题考查了圆的基本性质,等腰三角形的性质以及三角形外角的性质,根据三角形外角的性质得出关于∠A的方程是解题关键.
11. 如图,⊙O是△ABC的外接圆,∠A=30°,BC=4,则⊙O的直径为___.
【答案】8
【解析】
【分析】
连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.
【详解】解:如图,连接OB,OC,
∵∠A=30°,
∴∠BOC=60°,
∴△BOC是等边三角形,
又∵BC=4,
∴BO=CO=BC=BC=4,
∴⊙O的直径为8,
故答案为:8.
【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.
12. 在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为__________________________.
【答案】x(x-1)=110
【解析】
试题解析:有个小朋友参加聚会,则每人送出件礼物,
由题意得,
故答案为
13. 如图,四边形 ABCD 内接于⊙O,已知∠ADC=140°,则∠AOC=_____°.
【答案】80
【解析】
【分析】
根据圆的内接四边形的性质可求出∠ABC的度数,在根据圆周角定理求出∠AOC的度数即可.
【详解】∵四边形 ABCD 内接于⊙O,
∴∠B+∠ADC=180°,
∵∠ADC=140°,
∴∠B=40°,
由圆周角定理得,∠AOC=2∠B=80°,
故答案为80
【点睛】本题考查圆的内接四边形的性质及圆周角定理,圆的内接四边形的对角互补;一条弧所对的圆周角是它所对的圆心角的一半;熟练掌握相关定理及性质是解题关键.
14. 关于x的一元二次方程kx2﹣4x+3=0有实数根,则k应满足的条件是_____.
【答案】k≤且k≠0;
【解析】
【分析】
利用一元二次方程根的判别式及一元二次方程的定义解答即可.
【详解】∵关于x的一元二次方程kx2﹣4x+3=0有实数根,
∴△=(-4)2-4k×3≥0且k≠0,
解得k≤且k≠0,
故答案为k≤且k≠0
【点睛】本题考查了一元二次方程的定义及判别式,一元二次方程的一般形式为ax2+bx+c=0(a≠0),当判别式△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△
相关试卷
这是一份2021-2022学年江苏省连云港市灌云县西片九年级上学期数学第一次月考试题及答案,共19页。试卷主要包含了 一元二次方程x2=3x的根是等内容,欢迎下载使用。
这是一份2020-2021学年江苏省连云港市灌云县西片九年级上学期数学第一次月考试题及答案,共20页。试卷主要包含了 已知方程x2﹣, 如图,外接圆的圆心坐标是等内容,欢迎下载使用。
这是一份2021-2022学年江苏省连云港市灌云县西片九年级上学期数学第一次月考试题及答案,共15页。试卷主要包含了 一元二次方程x2=3x的根是等内容,欢迎下载使用。