所属成套资源:(最新更新-全题型全考点)《备战2024年高考数学一轮复习》(新教材新高考)
- 第18讲 端点效应(先猜后证-必要性探索)在导数中的应用(高阶拓展)(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考) 试卷 1 次下载
- 第19讲 拉格朗日中值定理在导数中的应用(高阶拓展)(2类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考) 试卷 2 次下载
- 第02讲 三角恒等变换(和差公式、倍角公式)(5类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考) 试卷 2 次下载
- 第03讲 三角函数的图象与性质(5类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考) 试卷 2 次下载
- 第04讲 三角函数的伸缩平移变换(3类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考) 试卷 2 次下载
第01讲 三角函数概念与诱导公式(5类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考)
展开2024高考数学一轮复习第01讲 三角函数概念与诱导公式(核心考点精讲精练)1. 4年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较低,分值为5分【备考策略】1.了解任意角和弧度制的概念,能进行弧度与角度的互化2.借助单位圆理解三角函数(正弦、余弦、正切)的定义,并能利用三角函数的定义解决相关问题3..理解并掌握同角三角函数的基本关系式(平方关系+商数关系),够利用公式化简求值4.能借助单位圆的对称性利用三角函数定义推导出诱导公式,能够运用诱导公式解决相关问题【命题预测】本节内容是新高考卷的必考内容,一般会考查三角函数化简求值或特殊角求三角函数值,需加强复习备考知识讲解角的定义平面内一条射线绕着端点从一位置旋转到另一个位置所形成的的图形叫做角;射线的端点叫做角的顶点,旋转开始时的射线叫做角的始边,旋转终止时的射线叫做角的终边角的分类按照角终边的位置可分为(象限角和轴线角)按照选择方向可分为(正角(逆时针选择)、负角(顺时针选择)和零角(不旋转))象限角第Ⅰ象限角:,或,第Ⅱ象限角:,第Ⅲ象限角:,第Ⅳ象限角:,或,轴线角终边落在轴正半轴上:,终边落在轴负半轴上:,终边落在轴正半轴上:,终边落在轴负半轴上:,终边落在轴上:,,终边落在轴上:,终边落在坐标轴上:,,终边落在上:,终边落在上:,或:,β,α终边相同⇔β=α+2kπ,k∈Z.β,α终边关于x轴对称⇔β=-α+2kπ,k∈Z.β,α终边关于y轴对称⇔β=π-α+2kπ,k∈Z.β,α终边关于原点对称⇔β=π+α+2kπ,k∈Z. 终边相同的角与终边相同的角的集合为:,角度与弧度的关系,扇形的弧长、周长及面积公式三角函数的定义,正弦线:,余弦线:,正切线:三角函数在各象限内的符号三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.特殊角的三角函数值 两角互余的三角函数关系互余,,已知,则:两角互补的三角函数关系互补,,,已知,则:,常见三角不等式若,则;若,则..同角三角函数的基本关系平方关系:商数关系:推导公式:诱导公式诱导类型或,,或,,或,,诱导方法:奇变偶不变,符号看象限奇偶指的是或中的奇偶,若为奇数,变函数名;,若为偶数,不变函数名;,,象限指的是原函数名的象限,再判断符号规定:无论角多大,看作第一象限角(锐角)诱导公式, ,, ,,,,,,,,,,,,,, ,,,考点一、扇形的弧长及面积计算1.(2022·全国·统考高考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D在上,.“会圆术”给出的弧长的近似值s的计算公式:.当时,( )A. B. C. D.【答案】B【分析】连接,分别求出,再根据题中公式即可得出答案.【详解】解:如图,连接,因为是的中点,所以,又,所以三点共线,即,又,所以,则,故,所以.故选:B.2.(2020·浙江·统考高考真题)已知圆锥的侧面积(单位:) 为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:)是 .【答案】【分析】利用题目所给圆锥侧面展开图的条件列方程组,由此求得底面半径.【详解】设圆锥底面半径为,母线长为,则,解得.故答案为:【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.1.(2023·福建福州·福州三中校考模拟预测)如图是一个圆台的侧面展开图(扇形的一部分),若扇形的两个圆弧所在圆的半径分别是1和3,且,则该圆台的体积为( ) A. B. C. D.【答案】C【分析】根据给定条件,求出圆台的上下底面圆的半径,再求出圆台的高并结合圆台的体积公式求解作答.【详解】设圆台上底面圆半径为,下底面圆半径为,依题意,,且,解得,而圆台的母线长,因此圆台的高,所以圆台的体积.故选:C2.(2023·广东深圳·深圳中学统考模拟预测)圆锥侧面展开图扇形的圆心角为60°,底面圆的半径为8,则圆锥的侧面积为( )A. B. C. D.【答案】A【分析】运用扇形的弧长公式及圆锥的侧面积公式计算即可.【详解】设圆锥的半径为r,母线长为l,则,由题意知,,解得:,所以圆锥的侧面积为.故选:A.3.(2023·福建·统考模拟预测)中国古代数学专著《九章算术》的第一章“方田”中载有“半周半径相乘得积步”,其大意为:圆的半周长乘以其半径等于圆面积.南北朝时期杰出的数学家祖冲之曾用圆内接正多边形的面积“替代”圆的面积,并通过增加圆内接正多边形的边数n使得正多边形的面积更接近圆的面积,从而更为“精确”地估计圆周率π.据此,当n足够大时,可以得到π与n的关系为( )A. B. C. D.【答案】A【分析】设圆的半径为,由题意可得,化简即可得出答案.【详解】设圆的半径为,将内接正边形分成个小三角形,由内接正边形的面积无限接近圆的面即可得:,解得:.故选:A.4.(2023·浙江嘉兴·统考二模)相传早在公元前3世纪,古希腊天文学家厄拉多塞内斯就首次测出了地球半径.厄拉多塞内斯选择在夏至这一天利用同一子午线(经线)的两个城市(赛伊城和亚历山大城)进行观测,当太阳光直射塞伊城某水井时,亚历山大城某处的太阳光线与地面成角,又知某商队旅行时测得与的距离即劣弧的长为5000古希腊里,若圆周率取3.125,则可估计地球半径约为( )A.35000古希腊里 B.40000古希腊里C.45000古希腊里 D.50000古希腊里【答案】B【分析】利用圆心角所对应的弧长是即可求解.【详解】设圆周长为,半径长为,两地间的弧长为,对应的圆心角为,的圆心角所对应的弧长就是圆周长,的圆心角所对应的弧长是,即,于是在半径为的圆中,的圆心角所对的弧长为:,.当为5000古希腊里,,即时,古希腊里.故选:B.5.(2023·江苏常州·江苏省前黄高级中学校考二模)如图,圆锥的底面半径为1,侧面展开图是一个圆心角为的扇形.把该圆锥截成圆台,已知圆台的下底面与该圆锥的底面重合,圆台的上底面半径为,则圆台的侧面积为( )A. B. C. D.【答案】C【分析】由已知可得出圆锥的母线,进而根据圆锥、圆台的轴截面,即可得出答案.【详解】假设圆锥半径,母线为,则.设圆台上底面为,母线为,则.由已知可得,,所以.如图,作出圆锥、圆台的轴截面则有,所以.所以圆台的侧面积为.故选:C.考点二、三角函数求值问题综合1.(2020·山东·统考高考真题)已知直线的图像如图所示,则角是( )A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角【答案】D【分析】本题可根据直线的斜率和截距得出、,即可得出结果.【详解】结合图像易知,,,则角是第四象限角,故选:D.2.(全国·高考真题)若则在( )A.第一、三象限 B.第一、二象限 C.第一、四象限 D.第二、四象限【答案】A【分析】先确定每个函数在各个象限的符号,进一步判断即可得出答案.【详解】因为在第一、二象限为正,第三、四象限为负;在第一、四象限为正,第二、三象限为负.而,所以在第一、三象限.故选:A.3.(全国·高考真题)已知α是第四象限角,cos α=,则sin α等于( )A. B.-C. D.-【答案】B【分析】根据同角三角函数平方关系式以及三角函数值在各象限的符号即可解出.【详解】由条件知α是第四象限角,所以,即sin α===.故选:B.【点睛】本题主要考查同角三角函数平方关系式以及三角函数值在各象限的符号的应用,属于容易题.4.(2023·河北沧州·沧县中学校考模拟预测)已知点为角终边上一点,绕原点将顺时针旋转,点旋转到点处,则点的坐标为( )A. B. C. D.【答案】B【分析】由三角函数的定义求得,根据题意得到射线为角的终边,结合两角差的正、余弦公式,求得和的值,进而求得点的坐标,得到答案.【详解】因为,可得,由三角函数的定义,可得,又由绕原点将顺时针旋转,可得且射线为角的终边,所以,,所以点的坐标为.故选:B.5.(2021·北京·统考高考真题)若点关于轴对称点为,写出的一个取值为 .【答案】(满足即可)【分析】根据在单位圆上,可得关于轴对称,得出求解.【详解】与关于轴对称,即关于轴对称, ,则,当时,可取的一个值为.故答案为:(满足即可).1.(北京·高考真题)已知,那么角是( )A.第一或第二象限角 B.第二或第三象限角C.第三或第四象限角 D.第一或第四象限角【答案】C【详解】∵,∴ 当cosθ0时,θ∈第三象限;当cosθ>0,tanθ