所属成套资源:人教版高中物理新教材同步讲义选修第三册 (含解析)
人教版高中物理新教材同步讲义选修第三册 第4章 4 第1课时 氢原子光谱和玻尔的原子模型(含解析)
展开
这是一份人教版高中物理新教材同步讲义选修第三册 第4章 4 第1课时 氢原子光谱和玻尔的原子模型(含解析),共10页。
4 氢原子光谱和玻尔的原子模型第1课时 氢原子光谱和玻尔的原子模型[学习目标] 1.知道光谱、线状谱和连续谱的概念.2.知道氢原子光谱的实验规律,知道什么是光谱分析.3.知道玻尔原子理论的基本假设的主要内容.了解能级跃迁、轨道和能量量子化以及基态、激发态等概念.一、光谱1.定义:用棱镜或光栅把物质发出的光按波长(频率)展开,获得波长(频率)和强度分布的记录.2.分类(1)线状谱:光谱是一条条的亮线.(2)连续谱:光谱是连在一起的光带.3.特征谱线:气体中中性原子的发光光谱都是线状谱,说明原子只发出几种特定频率的光,不同原子的亮线位置不同,说明不同原子的发光频率不一样,光谱中的亮线称为原子的特征谱线.4.应用:利用原子的特征谱线,可以鉴别物质和确定物质的组成成分,这种方法称为光谱分析,它的优点是灵敏度高,样本中一种元素的含量达到10-13 kg时就可以被检测到.二、氢原子光谱的实验规律1.许多情况下光是由原子内部电子的运动产生的,因此光谱是探索原子结构的一条重要途径.2.氢原子光谱的实验规律满足巴耳末公式:=R∞(-)(n=3,4,5,…)式中R∞为里德伯常量,R∞=1.10×107 m-1,n取整数.3.巴耳末公式的意义:以简洁的形式反映了氢原子的线状光谱的特征.三、经典理论的困难1.核式结构模型的成就:正确地指出了原子核的存在,很好地解释了α粒子散射实验.2.经典理论的困难:经典物理学既无法解释原子的稳定性,又无法解释原子光谱的分立线状谱.四、玻尔原子理论的基本假设1.轨道量子化(1)原子中的电子在库仑引力的作用下,绕原子核做圆周运动.(2)电子运行轨道的半径不是任意的,也就是说电子的轨道是量子化的(填“连续变化”或“量子化”).(3)电子在这些轨道上绕核的运动是稳定的,不产生电磁辐射.2.定态(1)当电子在不同的轨道上运动时,原子处于不同的状态,具有不同的能量.电子只能在特定轨道上运动,原子的能量只能取一系列特定的值.这些量子化的能量值叫作能级.(2)原子中这些具有确定能量的稳定状态,称为定态.能量最低的状态叫作基态,其他的状态叫作激发态.3.频率条件当电子从能量较高的定态轨道(其能量记为En)跃迁到能量较低的定态轨道(能量记为Em,m<n)时,会放出能量为hν的光子,该光子的能量hν=En-Em,该式称为频率条件,又称辐射条件.判断下列说法的正误.(1)气体中中性原子的发光光谱都是线状谱,并且只能发出几种特定频率的光.( √ )(2)线状谱和连续谱都可以用来鉴别物质.( × )(3)可以利用光谱分析来鉴别物质和确定物质的组成成分.( √ )(4)玻尔的原子结构假说认为电子的轨道是量子化的.( √ )(5)电子从较高的能级向较低的能级跃迁时,会放出任意频率的光子.( × )一、光谱和光谱分析1.光谱的分类2.太阳光谱特点在连续谱的背景上出现一些不连续的暗线,是一种吸收光谱产生原因阳光中含有各种颜色的光,但当阳光透过太阳的高层大气射向地球时,太阳高层大气中含有的元素会吸收它自己特征谱线的光,然后再向四面八方发射出去,到达地球的这些谱线看起来就暗了,这就形成了明亮背景下的暗线 3.光谱分析(1)优点:灵敏度高,分析物质的最低量达10-13 kg.(2)应用:a.发现新元素;b.鉴别物体的物质成分.(3)用于光谱分析的光谱:线状谱和吸收光谱.例1 (多选)下列关于光谱的说法正确的是( )A.连续谱就是由连续发光的物体产生的光谱,线状谱是线状光源产生的光谱B.连续谱包括一切波长的光,线状谱只包括某些特定波长的光C.发射光谱一定是连续谱D.炽热的液体发射连续谱答案 BD解析 连续谱是指光谱由连续分布的一切波长的光组成的,而不是指光源是连续的,连续谱是由炽热固体、液体及高压气体发光产生的,线状谱是指光谱是由一些不连续的亮线组成的,是由稀薄气体或金属蒸气所发出的光产生的,而不是指光源是线状的,A错误,B、D正确;发射光谱可以是连续谱也可以是线状谱,C错误.例2 利用光谱分析的方法能够鉴别物质和确定物质的组成成分,关于光谱分析,下列说法正确的是( )A.利用高温物体的连续谱就可鉴别其组成成分B.利用物质的线状谱就可鉴别其组成成分C.高温物体发出的光通过某物质后的光谱上的暗线反映了高温物体的组成成分D.同一种物质的线状谱上的亮线与吸收光谱上的暗线,由于光谱的不同,它们没有关系答案 B解析 高温物体的连续谱包括了各种频率的光,与其组成成分无关,A错误;某种物质发射的线状谱中的亮线与某种原子发出的某频率的光有关,通过这些亮线与原子的特征谱线对照,即可确定物质的组成成分,B正确;高温物体发出的光通过某物质后某些频率的光被吸收而形成暗线,这些暗线由所经过的物质决定,C错误;某种物质发出某种频率的光,当光通过这种物质时它也会吸收这种频率的光,因此同一物质线状谱上的亮线与吸收光谱上的暗线相对应,D错误. 二、氢原子光谱的实验规律导学探究如图所示为氢原子的光谱.(1)仔细观察,氢原子光谱具有什么特点?(2)阅读课本,指出氢原子光谱的谱线波长具有什么规律?答案 (1)从右至左,相邻谱线间的距离越来越小.(2)可见光区域的四条谱线的波长满足巴耳末公式:=R∞(-)(n=3,4,5,…)知识深化1.氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性.2.巴耳末公式(1)巴耳末对氢原子光谱的谱线进行研究得到公式:=R∞(-)(n=3,4,5,…),该公式称为巴耳末公式.式中R∞叫作里德伯常量,实验值为R∞=1.10×107 m-1.(2)公式中只能取n≥3的整数,不能连续取值,波长是分立的值.3.其他谱线:除了巴耳末系,氢原子光谱在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.例3 (多选)下列关于巴耳末公式=R∞(-)的理解,正确的是( )A.巴耳末系的4条谱线位于红外区B.公式中n可取任意值,故氢原子光谱是连续谱C.公式中n只能取大于或等于3的整数,故氢原子光谱是线状谱D.在巴耳末系中n值越大,对应的波长λ越短答案 CD解析 此公式是巴耳末在研究氢原子光谱在可见光区的四条谱线时得到的,A错误;公式中n只能取大于或等于3的整数,λ不能连续取值,故氢原子光谱是线状谱,B错误,C正确;根据公式可知,n值越大,对应的波长λ越短,D正确.三、玻尔原子理论1.轨道量子化(1)轨道半径只能够是一些不连续的、某些分立的数值.(2)氢原子的电子轨道最小半径为r1=0.053 nm,电子的轨道半径满足rn=n2r1,式中n称为量子数,对应不同的轨道,只能取正整数.2.能量量子化(1)不同轨道对应不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的,原子在不同状态有不同的能量,所以原子的能量也是量子化的.(2)基态:原子最低的能量状态称为基态,对应的电子在离核最近的轨道上运动,氢原子基态能量E1=-13.6 eV.(3)激发态:除基态之外的其他能量状态称为激发态,对应的电子在离核较远的轨道上运动.氢原子各能级的关系为:En=E1[E1=-13.6 eV,(n=1,2,3,…)]3.跃迁原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两种定态的能量差决定,即高能级Em低能级En.考向1 对玻尔理论的理解例4 (2021·广东学业水平考试)根据玻尔理论,下列关于氢原子的论述正确的是( )A.若氢原子由能量为En的定态向低能级Em跃迁,则氢原子要辐射的光子能量为hν=En-EmB.电子沿某一轨道绕核运动,若圆周运动的频率为ν,则其发光的频率也是νC.一个氢原子中的电子从一个半径为ra的轨道直接跃迁到另一半径为rb的轨道,则此过程原子要辐射某一频率的光子D.氢原子吸收光子后,将从高能级向低能级跃迁答案 A解析 原子由能量为En的定态向低能级跃迁时,辐射的光子能量等于两能级的能量差,故A正确;电子沿某一轨道绕核运动,处于某一定态,不向外辐射能量,原子不发光,故B错误;电子只有由半径大的轨道跃迁到半径小的轨道,能级降低,才能辐射某一频率的光子,故C错误;原子吸收光子后能量增加,能级升高,故D错误.针对训练 若用|E1|表示氢原子处于基态时能量的绝对值,处于n=3激发态的氢原子向基态跃迁时______(“辐射”或“吸收”)光子的能量为________(处于第n能级的能量为En=).答案 辐射 |E1|解析 n=3时,E3=,从n=3的激发态向基态跃迁时要辐射光子,辐射光子能量ΔE=|E3-E1|=|E1|. 考向2 氢原子的能量和能量变化例5 (多选)根据玻尔理论,氢原子的核外电子由外层轨道跃迁到内层轨道后( )A.原子的能量增加,系统的电势能减少B.原子的能量减少,核外电子的动能减少C.原子的能量减少,核外电子的动能增加D.原子系统的电势能减少,核外电子的动能增加答案 CD解析 电子由外层轨道跃迁到内层轨道时,放出光子,电子势能减少,原子总能量减少,根据k=m,Ek=mv2,解得Ek=k,可知半径越小,电子动能越大,原子系统的电势能减少,故A、B错误,C、D正确.原子的能量及变化规律1.原子的能量:En=Ekn+Epn.2.电子绕原子核运动时:k=m,故Ekn=mvn2=电子轨道半径越大,电子绕核运动的动能越小.3.当电子的轨道半径增大时,库仑引力做负功,原子的电势能增大,反之,电势能减小.4.电子的轨道半径增大时,说明原子吸收了能量,从能量较低的轨道跃迁到了能量较高的轨道.即电子轨道半径越大,原子的能量En越大.考点一 光谱和光谱分析1.(多选)(2021·江西高安中学高二期中)关于线状谱,下列说法中正确的是( )A.每种原子处在不同温度下发光的线状谱不同B.每种原子处在不同的物质中的线状谱相同C.每种原子在任何条件下发光的线状谱都相同D.两种不同的原子发光的线状谱可能相同答案 BC解析 每种原子都有自己的结构,只能发出由内部结构决定的自己的特征谱线,不会因温度、所处物质不同而改变,故B、C正确,A、D错误.2.对原子光谱,下列说法中不正确的是( )A.原子光谱是不连续的B.由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的C.由于各种原子的原子结构不同,所以各种原子的原子光谱也不相同D.分析物质发出的光谱,可以鉴别物质中含哪些元素答案 B解析 原子光谱为线状谱,不连续,A对;各种原子都有自己的特征谱线,故B错,C对;根据各种原子的特征谱线进行光谱分析可鉴别物质组成,D对.3.(多选)(2021·咸阳市高二期中)下列关于光谱和光谱分析的说法中正确的是( )A.光谱包括发射光谱、连续谱、线状谱、原子光谱、吸收光谱五种光谱B.往酒精灯的火焰上撒精盐,可以用分光镜观察到钠的线状谱C.利用太阳光谱可以分析太阳的化学组成D.各种原子的发射光谱都是线状谱答案 BD解析 光谱包括发射光谱和吸收光谱两种,其中发射光谱分为连续谱和线状谱,线状谱和吸收光谱都能体现不同原子的特征,称为原子光谱,各种原子的发射光谱都是线状谱,选项A错误,D正确;往酒精灯的火焰上撒精盐,可以用分光镜观察到钠的线状谱,选项B正确;太阳光谱是吸收光谱,其中的暗线,是太阳光经过太阳大气层时某些特定频率的光被吸收后而产生的,说明太阳大气层中存在与这些暗线相对应的元素,但是不能分析太阳的化学组成,选项C错误.4.(多选)关于光谱,下列说法正确的是( )A.炽热的液体发射连续谱B.线状谱和吸收光谱都可以用来对物质进行分析C.太阳光谱中的暗线,说明太阳中缺少与这些暗线相对应的元素D.发射光谱一定是连续谱答案 AB解析 炽热的固体、液体和高压气体的发射光谱是连续谱,故选项A正确;每种原子只能发出具有本身特征的某些波长的光,各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应,因此吸收光谱中的暗线,也是原子的特征谱线,可以用来进行光谱分析,选项B正确;太阳光谱中的暗线,说明太阳大气中含有与这些暗线相对应的元素,选项C错误;发射光谱有连续谱和线状谱,选项D错误.考点二 氢原子光谱的实验规律 经典理论的困难5.对于巴耳末公式,下列说法正确的是( )A.所有氢原子光谱的波长都与巴耳末公式相对应B.巴耳末公式只确定了氢原子发光中的可见光部分的光波长C.巴耳末公式确定了氢原子发光中的一个线系的波长,其中既有可见光,又有紫外光D.巴耳末公式确定了各种原子发光中的光的波长答案 C解析 巴耳末公式只确定了氢原子发光中一个线系的波长,不能描述氢原子发出的各种波长,也不能描述其他原子发光中的光的波长,A、D错误;巴耳末公式是由当时已知的可见光中的部分谱线总结出来的,但它适用于整个巴耳末线系,该线系包括可见光和紫外光,B错误,C正确.6.(多选)关于经典电磁理论与原子的核式结构之间的关系,下列说法正确的是( )A.经典电磁理论很容易解释原子的稳定性B.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上C.根据经典电磁理论,原子光谱应该是连续的D.原子的核式结构模型彻底否定了经典电磁理论答案 BC解析 根据经典电磁理论,电子在绕核运动的过程中,要向外辐射电磁波,因此能量要减少,电子的轨道半径要减小,最终会落到原子核上,因而原子是不稳定的.电子在转动过程中,随着转动半径不断减小,转动频率不断增大,辐射电磁波的频率不断变化,因而大量原子发光的光谱应该是连续谱.事实上,原子是稳定的,原子光谱也不是连续谱,而是线状谱,故选项A错误,B、C正确;经典电磁理论可以很好地应用于宏观物体,但不能用于解释原子世界的现象,故选项D错误.考点三 玻尔原子理论7.(多选)玻尔在他提出的原子模型中所作的假设有( )A.原子处于称为定态的能量状态时,电子在轨道上绕核转动,但并不向外辐射能量B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率答案 ABC8.(多选)光子的发射和吸收过程是( )A.原子从基态跃迁到激发态要放出光子,放出光子的能量等于原子在始、末两个能级的能量差B.原子不能从低能级向高能级跃迁C.原子吸收光子后从低能级跃迁到高能级,电子的电势能增加D.原子无论是吸收光子还是放出光子,吸收的光子或放出的光子的能量恒等于始、末两个能级的能量差答案 CD解析 原子从基态跃迁到激发态要吸收光子,吸收的光子的能量等于原子在初、末两个能级的能量差,故A错误;原子吸收光子可从低能级跃迁到高能级,该过程电子动能变小,电子的电势能增加,故B错误,C正确;根据玻尔理论可知,原子无论是吸收光子还是放出光子,吸收的光子或放出的光子的能量恒等于始、末两个能级的能量差,故D正确.9.若用E1表示氢原子处于基态时的能量,处于第n能级的能量为En=,则在下列各能量值中,可能是氢原子从激发态向基态跃迁时辐射出来的能量的是( )A. B.C. D.答案 B解析 处于第2能级的能量E2=,则向基态跃迁时辐射的能量ΔE=,处于第3能级的能量E3=,则向基态跃迁时辐射的能量ΔE′=,处于第4能级的能量为E4=,向基态跃迁时辐射的能量ΔE″=,则B正确.10.原子从高能级向低能级跃迁产生光子,将频率相同的光子汇聚可形成激光.下列说法正确的是( )A.频率相同的光子能量相同B.原子跃迁发射的光子频率连续C.原子跃迁只产生单一频率的光子D.激光照射金属板不可能发生光电效应答案 A解析 根据E=hν可知,频率相同的光子能量相同,故A正确;原子从一个定态跃迁到能级更低的定态时,原子辐射一定频率的光子,光子的能量由这两种定态的能量差决定,电子轨道是量子化的,能量是量子化的,故而频率是不连续的,故B错误;原子在不同的轨道之间跃迁产生不同频率的光子,故C错误;根据爱因斯坦光电效应方程Ek=hν-W0可知,光子的能量大于金属板的逸出功时,照射金属板即可发生光电效应,故D错误.11.如图甲所示为a、b、c、d四种元素的特征谱线,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺少的元素为( )A.a元素 B.b元素C.c元素 D.d元素答案 B解析 由矿物的线状谱与几种元素的特征谱线进行对照,b元素的特征谱线在该线状谱中不存在,与几个元素的特征谱线不对应的谱线说明该矿物中还有其他元素.故选B.12.氢原子吸收一个光子后,根据玻尔理论,下列判断正确的是( )A.电子绕核旋转的轨道半径增大B.电子的动能会增大C.氢原子的电势能减小D.氢原子的能级降低答案 A解析 氢原子吸收一个光子后,从低能级向高能级跃迁,氢原子的能量增大,能级升高,轨道半径增大,故A正确,D错误;氢原子的能量增大,根据=,轨道半径增大,则电子速率减小,动能减小,由于氢原子能量增大,则氢原子电势能增大,故B、C错误.