所属成套资源:中考数学二轮复习数学模型含解析答案
中考数学二轮复习数学模型-对角互补模型含解析答案
展开这是一份中考数学二轮复习数学模型-对角互补模型含解析答案,共8页。试卷主要包含了已知,探究,方法导引,综合实践等内容,欢迎下载使用。
1.如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.
(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.
(2)探究证明
将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明
(3)拓展延伸
在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.
2.已知:△ABC中,CA=CB, ∠ACB=90º,D为△ABC外一点,且满足∠ADB=90º
(1)如图所示,求证:DA+DB=DC
(2)如图所示,猜想DA.DB.DC之间有何数量关系?并证明你的结论.
(3)如图所示,过C作CH⊥BD于H,BD=6,AD=3,则CH= .
3.例:截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.
(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.
解题思路:将△ABD绕点A逆时针旋转60°得到△ACE,可得AE=AD, CE=BD,∠ABD=∠ACE,∠DAE=60°,根据∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,则 ∠ACE+∠ACD=180°,易知△ADE是等边三角形,所以AD=DE,从而解决问题.
根据上述解题思路,三条线段DA、DB、DC之间的等量关系是___________;
(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.
4.如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.
(1)思路梳理
将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.
5.探究:如图1和2,四边形中,已知,,点,分别在、上,.
(1)①如图 1,若、都是直角,把绕点逆时针旋转至,使与重合,则能证得,请写出推理过程;
②如图 2,若、都不是直角,则当与满足数量关系_______时,仍有;
(2)拓展:如图3,在中,,,点、均在边上,且.若,求的长.
6.如图,已知,在的角平分线上有一点,将一个角的顶点与点重合,它的两条边分别与射线相交于点.
(1)如图1,当绕点旋转到与垂直时,请猜想与的数量关系,并说明理由;
(2)当绕点旋转到与不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;
(3)如图3,当绕点旋转到点位于的反向延长线上时,求线段与之间又有怎样的数量关系?请写出你的猜想,不需证明.
7.如图,一伞状图形,已知,点是角平分线上一点,且,,与交于点,与交于点.
(1)如图一,当与重合时,探索,的数量关系
(2)如图二,将在(1)的情形下绕点逆时针旋转度,继续探索,的数量关系,并求四边形的面积.
8.(1)方法导引:
问题:如图1,等边三角形的边长为6,点是和的角平分线交点,,绕点任意旋转,分别交的两边于,两点.求四边形面积.
讨论:
①小明:在旋转过程中,当经过点时,一定经过点.
②小颖:小明的分析有道理,这样我们就可以利用“”证出.
③小飞:因为,所以只要算出的面积就得出了四边形的面积.
老师:同学们的思路很清晰,也很正确.在分析和解决问题时,我们经常会借用特例作辅助线来解决一般问题:请你按照讨论的思路,直接写出四边形的面积:________.
(2)应用方法:
①特例:如图2,的顶点在等边三角形的边上,,,边于点,于点,求的面积.
②探究:如图3,已知,顶点在等边三角形的边上,,,记的面积为,的面积为,求的值.
③应用:如图4,已知,顶点在等边三角形的边的延长线上,,,记的面积为,的面积为,请直接写出与的关系式.
9.综合实践
初步探究:
如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.
(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系为 ;
解决问题:
(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;
(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?若成立,请给于证明;若不成立,线段OD、OE与OC之间的数量关系为 ;
拓展应用:
(4)当∠DCE绕点C旋转到CD与OA垂直时,请猜想四边形CDOE的周长与OC的数量关系,并说明理由;
评卷人
得分
一、解答题
参考答案:
1.(1);(2)AD﹣DC=BD;(3)BD=AD=+1.
【分析】(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系
(2)过点B作BE⊥BD,交MN于点E.AD交BC于O,
证明,得到,,
根据为等腰直角三角形,得到,
再根据,即可解出答案.
(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.
在DA上截取一点H,使得CD=DH=1,则易证,
由即可得出答案.
【详解】解:(1)如图1中,
由题意:,
∴AE=CD,BE=BD,
∴CD+AD=AD+AE=DE,
∵是等腰直角三角形,
∴DE=BD,
∴DC+AD=BD,
故答案为.
(2).
证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.
∵,
∴,
∴.
∵,,,
∴,
∴.又∵,
∴,
∴,,
∴为等腰直角三角形,.
∵,
∴.
(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.
此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,
∴.
【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.
2.(1)详见解析;(2)DA-DB=DC;(3)
【分析】(1)过C点作CQ⊥CD交DB的延长线于Q点,由余角的性质可得∠ACD=∠QCB,∠ADC=∠Q,由“AAS”可证△ACD≌△BCQ,可得CD=CQ,AD=BQ,由等腰直角三角形性质可得DQ=CD,即可得结论;
(2)过点C作CQ⊥CD交AD于点Q,由“SAS”可证△ACQ≌△BCD,可得AQ=BD,可证CQ=CD,且∠QCD=90°,即可得DA、DB、DC之间关系;
(3)过点C作CQ⊥CD交BD于点Q,由“SAS”可证△ACD≌△BCQ,可得AD=BQ,可证△DCQ是等腰直角三角形,由等腰直角三角形的性质可求CH的长.
【详解】证明:(1)如图,过C点作CQ⊥CD交DB的延长线于Q点
∵∠ACB=90°,CQ⊥CD,∠ADB=90°
∴∠ACD+∠DCB=90°,∠DCB+∠QCB=90°,∠ADC+∠CDQ=90°,∠CDQ+∠Q=90°
∴∠ACD=∠QCB,∠ADC=∠Q,且AC=BC
∴△ACD≌△BCQ(AAS)
∴CD=CQ,AD=BQ
∴DQ=DB+BQ=DB+AD
∵CD⊥CQ,∠DCQ=90°
∴DQ=CD
∴DB+AD=CD
(2)DA-DB=CD
理由如下:如图,过点C作CQ⊥CD交AD于点Q,
∵CA=CB,∠ACB=90°,
∴∠ABC=∠CAB=45°
∵∠ACB=90°,QC⊥CD
∴∠ACB=∠ADB=90°,
∴点A,点B,点D,点C四点共圆,
∴∠ADC=∠ABC=45°
∵QC⊥CD
∴∠CQD=∠CDQ=45°
∴CQ=CD,且∠QCD=90°
∴QD==CD
∵∠ACB=∠DCQ=90°,
∴∠ACQ=∠DCB,且AC=BC,CQ=CD
∴△ACQ≌△BCD(SAS)
∴AQ=BD
∴QD=CD=DA-AQ=DA-BD,
即:DA-DB=
(3)如图,过点C作CQ⊥CD交BD于点Q,
∵∠ACB=90°,QC⊥CD
∴∠ACB=∠ADB=90°,
∴点A,点B,点C,点D四点共圆,
∴∠CDQ=∠CAB=45°
∵QC⊥CD
∴∠CQD=∠CDQ=45°
∴CQ=CD,且∠QCD=90°
∴△DCQ是等腰直角三角形,
∵∠ACB=∠DCQ=90°,
∴∠ACD=∠QCB,且AC=BC,CQ=CD
∴△ACD≌△BCQ(SAS)
∴AD=BQ,
∴DQ=DB-BQ=DB-AD=3
∵△DCQ是等腰直角三角形,DQ=3,CH⊥DB
∴CH=DH=HQ=DQ=.
故答案为.
【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
3.(1)DA=DB+DC;(2) DA=DB+DC,证明见解析.
【分析】(1)由旋转60°可得AE=AD, CE=BD,∠ABD=∠ACE,∠DAE=60°,根据∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,则 ∠ACE+∠ACD=180°,易知△ADE是等边三角形,所以AD=DE,从而解决问题.
(2) 延长DC到点E,使CE=BD,连接AE,由已知可得,根据,可得=,可证,进而可得AD=AE, ,可得,由勾股定理可得:,进行等量代换可得结论.
【详解】(1)结论:DA=DB+DC.
理由:∵△ABD绕点A逆时针旋转60°得到△ACE,
∴AE=AD, CE=BD,∠ABD=∠ACE,∠DAE=60°,
∵∠BAC+∠BDC=180°,
∴∠ABD+∠ACD=180°,
∴∠ACE+∠ACD=180°,
∴D,C,E三点共线,
∵AE=AD,∠DAE=60°,
∴△ADE是等边三角形,
∴AD=DE,
∴AD=DC+CE=DB+DC;
(2)结论:DA=DB+DC,
证明如下:
如图所示,延长DC到点E,使CE=BD,连接AE,
∵,,
∴,
∵,
∴=,
∵AB=AC,CE=BD,
∴(SAS),
∴AD=AE, ,
∴,
∴,
∴,
∴DA=DB+DC.
【点睛】本题主要考查了截长补短的方法,通过全等三角形得到线段间的等量关系,正确作出辅助线找到全等三角形是解题的关键.
4.(1)EF=BE+DF;(2)EF=DF−BE;证明见解析;(3).
【分析】(1)将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,首先证明F,D,G三点共线,求出∠EAF=∠GAF,然后证明△AFG≌△AFE,根据全等三角形的性质解答;
(2)将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',首先证明E',D,F三点共线,求出∠EAF=∠E'AF,然后证明△AFE≌△AFE',根据全等三角形的性质解答;
(3)将△ABD绕点A逆时针旋转至△ACD',使AB与AC重合,连接ED',同(1)可证△AED≌AED',求出∠ECD'=90°,再根据勾股定理计算即可.
【详解】解:(1)将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,
∵∠B+∠ADC=180°,
∴∠FDG=180°,即点F,D,G三点共线,
∵∠BAE=∠DAG,∠EAF=∠BAD,
∴∠EAF=∠GAF,
在△AFG和△AFE中,,
∴△AFG≌△AFE,
∴EF=FG=DG+DF=BE+DF;
(2)EF=DF−BE;
证明:将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',则△ABE≌ADE',
∴∠DAE'=∠BAE,AE'=AE,DE'=BE,∠ADE'=∠ABE,
∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,
∴∠ADE'=∠ADC,即E',D,F三点共线,
∵∠EAF=∠BAD,
∴∠E'AF=∠BAD−(∠BAF+∠DAE')=∠BAD−(∠BAF+∠BAE)=∠BAD−∠EAF=∠BAD,
∴∠EAF=∠E'AF,
在△AEF和△AE'F中,,
∴△AFE≌△AFE'(SAS),
∴FE=FE',
又∵FE'=DF−DE',
∴EF=DF−BE;
(3)将△ABD绕点A逆时针旋转至△ACD',使AB与AC重合,连接ED',
同(1)可证△AED≌AED',
∴DE=D'E.
∵∠ACB=∠B=∠ACD'=45°,
∴∠ECD'=90°,
在Rt△ECD'中,ED'=,即DE=,
故答案为:.
【点睛】本题考查的是旋转变换的性质、全等三角形的判定和性质以及勾股定理等知识,灵活运用利用旋转变换作图、掌握全等三角形的判定定理和性质定理是解题的关键.
5.(1)①见解析;②,理由见解析;(2)
【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;
②根据旋转的性质得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;
(2)根据等腰直角三角形性质好勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3−x,根据勾股定理得出方程,求出x即可.
【详解】(1)①如图1,
∵把绕点逆时针旋转至,使与重合,
∴,,
∵,,
∴,
∴,
即,
在和中
∴,
∴,
∵,
∴;
②,
理由是:
把绕点旋转到,使和重合,
则,,,
∵,
∴,
∴,,在一条直线上,
和①知求法类似,,
在和中
∴,
∴,
∵,
∴;
故答案为:
(2)∵中,,
∴,由勾股定理得:
,
把绕点旋转到,使和重合,连接.
则,,,
∵,
∴,
∴,
在和中
∴,
∴,
设,则,
∵,
∴,
∵,,
∴,
由勾股定理得:,
,
解得:,
即.
【点睛】本题考查了旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.
6.(1),见解析;(2)结论仍然成立,见解析;(3)
【分析】(1)先判断出∠OCE=60°,再利用特殊角的三角函数得出OD=OC,同OE=OC,即可得出结论;
(2)同(1)的方法得OF+OG=OC,再判断出△CFD≌△CGE,得出DF=EG,最后等量代换即可得出结论;
(3)同(2)的方法即可得出结论.
【详解】解:(1)是的角平分线
在中,,
同理:
(2)(1)中结论仍然成立,理由:
过点作于,于
由(1)知,
,且点是的平分线上一点
(3)结论为:.
理由:过点C作CF⊥OA于F,CG⊥OB于G,
∴∠OFC=∠OGC=90°,
∵∠AOB=60°,
∴∠FCG=120°,
同(1)的方法得,OF=OC,OG=OC,
∴OF+OG=OC,
∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,
∴CF=CG,∵∠DCE=120°,∠FCG=120°,
∴∠DCF=∠ECG,
∴△CFD≌△CGE,
∴DF=EG,
∴OF=DF−OD=EG−OD,OG=OE−EG,
∴OF+OG=EG−OD+OE−EG=OE−OD,
∴OE−OD=OC.
【点睛】此题属于几何变换综合题,主要考查了角平分线的性质,全等三角形的判定和性质的综合运用,正确作出辅助线,构造全等三角形是解本题的关键.
7.(1),证明详见解析;(2),
【分析】(1)根据角平分线定义得到∠POF=60°,推出△PEF是等边三角形,得到PE=PF;
(2)过点P作PQ⊥OA,PH⊥OB,根据角平分线的性质得到PQ=PH,∠PQO=∠PHO=90°,根据全等三角形的性质得到PE=PF,S四边形OEPF=S四边形OQPH,求得OQ=1,QP=,根据三角形的面积公式即可得到结论.
【详解】解:(1)∵,平分,
∴,
∵,
∴ ,
∴是等边三角形,
∴;
(2)过点作,,
∵平分,
∴,,
∵,
∴∠QPH=60°,
∴,
∴,
在与中
,
∴,
∴,
,
∵,,平分,
∴,
∴,=,
∴=,
∴四边形的面积==
【点睛】本题考查了旋转的性质,角平分线的性质,全等三角形的判定和性质,三角形的面积,正确的作出辅助线是解题的关键.
8.(1);(2)①的面积;②xy=12;③.
【分析】(1)连接、,利用ASA证出,从而得出的面积与四边形的面积相等,过点作于点,利用锐角三角函数求出OH即可求出△OBC的面积,从而得出结论;
(2)①根据等边三角形的性质可得,从而求出∠BOD,然后根据30°所对的直角边是斜边的一半和勾股定理即可求出OD和BD,从而求出结论;
②过点作于,于,根据相似三角形判定定理可得,根据相似三角形的性质列出比例式,变形可得,然后根据三角形的面积公式即可求出结论;
③过点作交的延长线于,于,根据相似三角形的判定定理可得,根据相似三角形的性质列出比例式,变形可得,分别求出OM和ON,再结合三角形的面积公式即可求出结论.
【详解】解:(1)连接、
∵是等边三角形,
∴
∵是和的角平分线交点
∴
∴,
∴
∴
∴的面积与四边形的面积相等
过点作于点
∵,
∴
∵,
∴,
∴
∴四边形的面积为.
故答案为:.
(2)①∵是等边三角形,
∴
∵于点,
∴
∵,
∴,,
∴的面积
②过点作于,于.
由①得:,同理:
∵是等边三角形,
∴
∵,
∴
∴,
∴
∴,
∴
∴
③
过点作交的延长线于,于.
∵,
∴
∴,
∵
∴,
∴
∴
∵,,
∴,
∴
∵,,
∴,
∴
∴
【点睛】此题考查的是全等三角形的判定及性质、等边三角形的性质、相似三角形的判定及性质和锐角三角函数,掌握全等三角形的判定及性质、等边三角形的性质、相似三角形的判定及性质和锐角三角函数是解决此题的关键.
9.(1)OD+OE=OC;(2)仍然成立,理由见解析;(3)不成立,OE-OD=OC;(4)四边形CDOE的周长为(+1)OC,理由见解析.
【分析】(1)先判断出∠OCE=60°,再利用特殊角的三角函数得出OD=OC,同理OE=OC,即可得出结论;
(2)同(1)的方法得OF+OG=OC,再判断出△CFD≌△CGE,得出DF=EG,最后等量代换即可得出结论;
(3)同(2)的方法即可得出结论;
(4)同(1)可得OD+OE=OC,CD+CE=OC,进而可得结论.
【详解】:(1)∵OM是∠AOB的角平分线,
∴∠AOC=∠BOC=∠AOB=30°,
∵CD⊥OA,
∴∠ODC=90°,
∴∠OCD=60°,
∴∠OCE=∠DCE-∠OCD=60°,
在Rt△OCD中,OD=OC•cs30°=OC,
同理:OE=OC,
∴OD+OE=OC;
(2)(1)中结论仍然成立,理由:
过点C作CF⊥OA于F,CG⊥OB于G,
∴∠OFC=∠OGC=90°,
∵∠AOB=60°,
∴∠FCG=120°,
同(1)的方法得,OF=OC,OG=OC,
∴OF+OG=OC,
∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,
∴CF=CG,
∵∠DCE=120°,∠FCG=120°,
∴∠DCF=∠ECG,
∴△CFD≌△CGE,
∴DF=EG,
∴OF=OD+DF=OD+EG,OG=OE-EG,
∴OF+OG=OD+EG+OE-EG=OD+OE,
∴OD+OE=OC;
(3)(1)中结论不成立,结论为:OE-OD=OC,
理由:过点C作CF⊥OA于F,CG⊥OB于G,
∴∠OFC=∠OGC=90°,
∵∠AOB=60°,
∴∠FCG=120°,
同(1)的方法得,OF=OC,OG=OC,
∴OF+OG=OC,
∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,
∴CF=CG,∵∠DCE=120°,∠FCG=120°,
∴∠DCF=∠ECG,
∴△CFD≌△CGE,
∴DF=EG,
∴OF=DF-OD=EG-OD,OG=OE-EG,
∴OF+OG=EG-OD+OE-EG=OE-OD,
∴OE-OD=OC.
(4)由(1)可得OD+OE=OC,CD+CE=OC
∴OD+OE+CD+CE=(+1)OC,
故四边形CDOE的周长为(+1)OC.
【点睛】此题是几何变换综合题,主要考查了角平分线的定义和定理,全等三角形的判定和性质,特殊角的三角函数直角三角形的性质,正确作出辅助线是解本题的关键.
相关试卷
这是一份全等与相似模型-对角互补模型(解析版),共52页。试卷主要包含了旋转中的对角互补模型,已知等内容,欢迎下载使用。
这是一份中考数学专题——对角互补模型、婆罗摩发多模型、半角模型,共17页。
这是一份中考数学二轮复习数学模型-倍长中线模型含解析答案,共8页。试卷主要包含了已知等内容,欢迎下载使用。