所属成套资源:中考数学二轮复习专题含解析答案
中考数学二轮复习专题20统计含解析答案
展开
这是一份中考数学二轮复习专题20统计含解析答案,共35页。
专题20�统计
学校:___________姓名:___________班级:___________考号:___________
评卷人
得分
一、单选题
1.某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有60人,则劳动实践小组有( )
A.75人 B.90人 C.108人 D.150人
2.2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神舟十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是( )
A.完成航天医学领域实验项数最多
B.完成空间应用领域实验有5项
C.完成人因工程技术实验项数比空间应用领域实验项数多
D.完成人因工程技术实验项数占空间科学实验总项数的24.3%
3.观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为( )
A.5 B.6 C.7 D.8
4.李老师参加本校青年数学教师优质课比赛,笔试得90分、微型课得92分、教学反思得88分.按照图所显示的笔试、微型课、教学反思的权重,李老师的综合成绩为( )
A.88 B.90 C.91 D.92
5.某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67、63、69、55、65,则该组数据的中位数为( )
A.63 B.65 C.66 D.69
6.统计一名射击运动员在某次训练中10次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10.这组数据的众数是( )
A.7 B.8 C.9 D.10
7.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:
体温()
36.2
36.3
36.5
36.6
36.8
天数(天)
3
3
4
2
2
这14天中,小宁体温的众数和中位数分别为( )
A., B., C., D.,
8.六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是( )
A.平均数是14 B.中位数是14.5 C.方差3 D.众数是14
9.为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:
评委1
评委2
评委3
评委4
评委5
9.9
9.7
9.6
10
9.8
数据9.9,9.7,9.6,10,9.8的中位数是( )
A.9.6 B.9.7 C.9.8 D.9.9
10.A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是( )
A.且. B.且.
C.且 D.且.
11.为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是( )
A.平均数 B.中位数 C.众数 D.方差
12.今年我国小麦大丰收,农业专家在某种植片区随机抽取了10株小麦,测得其麦穗长(单位:cm)分别为8,8,6,7,9,9,7,8,10,8,那么这一组数据的方差为( )
A.1.5 B.1.4 C.1.3 D.1.2
13.一组数据4、5、6、a、b的平均数为5,则a、b的平均数为( )
A.4 B.5 C.8 D.10
14.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )
A.15.5,15.5 B.15.5,15 C.15,15.5 D.15,15
15.从,两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是( )
A.平均数 B.中位数 C.众数 D.方差
16.如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成的折线统计图.下列结论正确的是( )
A.平均数是6 B.众数是7 C.中位数是11 D.方差是8
17.下列调查中,适宜采用全面调查方式的是( )
A.检测“神舟十四号”载人飞船零件的质量 B.检测一批LED灯的使用寿命
C.检测黄冈、孝感、咸宁三市的空气质量 D.检测一批家用汽车的抗撞击能力
18.下列说法正确的是( )
A.为了解近十年全国初中生的肥胖人数变化趋势,采用扇形统计图最合适
B.“煮熟的鸭子飞了”是一个随机事件
C.一组数据的中位数可能有两个
D.为了解我省中学生的睡眠情况,应采用抽样调查的方式
评卷人
得分
二、多选题
19.依据“双减”政策要求,初中学生书面作业每天完成时间不超过90分钟.某中学为了解学生作业管理情况,抽查了七年级(一)班全体同学某天完成作业时长情况,绘制出如图所示的频数直方图:(数据分成3组:,,).则下列说法正确的是( )
A.该班有40名学生
B.该班学生当天完成作业时长在分钟的人数最多
C.该班学生当天完成作业时长在分钟的频数是5
D.该班学生当天完成作业时长在分钟的人数占全班人数的
评卷人
得分
三、填空题
20.遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是 .
21.在植树节当天,某班的四个绿化小组植树的棵数如下:10,8,9,9,则这组数据的平均数是 .
22.今年4月23日是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演讲内容”占40%、“语言表达”占40%、“形象风度”占10%、“整体效果”占10%进行计算,小芳这四项的得分依次为85,88,92,90,则她的最后得分是 分.
23.已知一组数据:4,5,5,6,5,4,7,8,则这组数据的众数是 .
24.某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树 株.
25.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为,则 .(填“>”“
【分析】分别求出平均数,再利用方差的计算公式计算甲、乙的方差,进行比较即可.
【详解】根据折线统计图中数据,
,,
∴,
,
∴,
故答案为:>.
【点睛】本题主要考查平均数和方差的计算,掌握方差的计算公式是解答本题的关键.
26.
【分析】直接根据众数的定义:一组数据中出现次数最多的数即为众数即可得出结论.
【详解】由表格可知:尺码的运动鞋销售量最多为双,即众数为.
故答案为:25.
【点睛】本题考查了众数,解题的关键是熟练掌握众数的定义.
27.(1)
(2)2.7小时
(3)制定标准的原则:既要让学生有努力的方向,又要有利于学生建立达标的信心;从平均数看,标准可以定为3小时,见解析
【分析】(1)求出这组数据所占的比例,再利用比例乘上即可得到;
(2)分别求出每组人数乘上组中值再求和,再除总人数即可;
(3)根据意义,既要让学生有努力的方向,又要有利于学生建立达标的信心.可以分别从从平均数,中位数来说明其合理性.
【详解】(1)解:,
.
(2)解:(小时).
答:由样本估计总体可知,该校学生目前每周劳动时间的平均数约为2.7小时.
(3)解:制定标准的原则:既要让学生有努力的方向,又要有利于学生建立达标的信心.
从平均数看,标准可以定为3小时.
理由:平均数为2.7小时,说明该校学生目前每周劳动时间平均水平为2.7小时,把标准定为3小时,至少有30%的学生目前每周劳动时间能达标,同时至少还有51%的学生未达标,这样使多数学生有更高的努力目标.
从中位数的范围或频数看,标准可以定为2小时.
理由:该校学生目前每周劳动时间的中位数落在范围内,把标准定为2小时,至少有49%的学生目前劳动时间能达标,同时至少还有21%的学生未达标,这样有利于学生建立达标的信心,促进未达标学生努力达标,提高该校学生的劳动积极性.
【点睛】本题考查了频数表,扇形圆心角、中位数、平均数等,解题的关键是从表中获取相应的信息及理解平均数及中位数的意义.
28.(1)
(2)人
(3)见解析
【分析】(1)由条形统计图求出平均每周劳动时间不少于3小时的人数,然后代入即可得出答案;
(2)由扇形统计图得木工所占比例为16%,然后代入即可得出答案;
(3)对学校来说应该多增加一些与学生生活息息相关的劳动课程,锻炼生活技能;对学生来说应该在学习的同时多多参加课外劳动课程,学一些与生活有关的技能,增加生活经验.
【详解】(1)由条形统计图可知:平均每周劳动时间不少于3小时的人数为人,
故平均每周劳动时间符合教育部要求的人数占被调查人数的百分比为.
(2)由扇形统计图得木工所占比例为,
故最喜欢的劳动课程为木工的有人.
(3)对学校:劳动课程应该多增加操作简单、与学生生活息息相关且能让学生有所收获的生活技能内容;
对学生:多多参加课外劳动课程,劳逸结合,学习一些基本的生活技能,比如烹饪、种植等
【点睛】本题考查调查统计,解题的关键是能够根据统计图得出关键信息并加以转化运算.
29.(1)<
(2)测试成绩为“6分”的百分比比培训前减少了25%
(3)测试成绩为“10分”的学生增加了220人
【分析】(1)先分别求解培训前与培训后的中位数,从而可得答案;
(2)分别求解培训前与培训后得6分的人数所占的百分比,再作差即可;
(3)分别计算培训前与培训后得满分的人数,再作差即可.
【详解】(1)解:由频数分布表可得:培训前的中位数为:
培训后的中位数为:
所以
故答案为:;
(2)
答:测试成绩为“6分”的百分比比培训前减少了25%.
(3)培训前:,培训后:,
.
答:测试成绩为“10分”的学生增加了220人.
【点睛】本题考查的是频数分布表,中位数的含义,利用样本估计总体,理解题意,从频数分布表中获取信息是解本题的关键.
30.(1);
(2),三人成绩从高到低的排名顺序为:小亮,小田,小明;
(3)班级制定的各部分所占比例不合理,见解析;
【分析】(1)由“内容”所占比例×360°计算求值即可;
(2)根据各部分成绩所占的比例计算加权平均数即可;
(3)根据 “内容”所占比例要高于“表达”比例,将“内容”所占比例设为40%即可;
【详解】(1)解:∵“内容”所占比例为,
∴“内容”的扇形的圆心角;
(2)解:,
∵,
∴三人成绩从高到低的排名顺序为:小亮,小田,小明;
(3)解:各部分所占比例不合理,
“内容”比“表达”重要,那么“内容”所占比例应大于“表达”所占比例,
∴“内容”所占百分比应为40%,“表达”所占百分比为30%,其它不变;
【点睛】本题考查了扇形圆心角的计算,加权平均数的计算,掌握相关概念的计算方法是解题关键.
31.(1)30,96,93
(2)七年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但七年级的中位数高于八年级
(3)估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是540人
【分析】(1)根据中位数和众数的定义即可得到结论;
(2)根据七年级的中位数高于八年级,于是得到七年级学生掌握防溺水安全知识较好;
(3)利用样本估计总体思想求解可得.
【详解】(1)解:,
∵在七年级10名学生的竞赛成绩中96出现的次数最多,
∴ ;
∵八年级10名学生的竞赛成绩在A组中有2个,在B组有1个,
∴八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,
∴,
故答案为:30,96,93;
(2)七年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但七年级的中位数高于八年级.
(3)七年级在的人数有6人,八年级在的人数有3人,
估计参加此次竞赛活动成绩优秀(x≥95)的学生人数为:(人),
答:估计参加此次竞赛活动成绩优秀(x≥95)的学生人数是540人.
【点睛】本题考查读扇形统计图的能力和利用统计图获取信息的能力以及中位数,众数和平均数,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
32.(1)10张
(2)90分
(3)96分
【分析】(1)用投票总数50减去投赞成票的张数40即可;
(2)根据平均数公式求解即可;
(3)根据所给计算方法代入数据计算即可.
【详解】(1)解:50-40=10张;
(2)解: =(88+87+94+91+90) ÷5=90分;
(3)解:40+10=110分;
分.
【点睛】本题考查了统计的知识,熟练掌握及平均数的计算公式是解答本题的关键.
33.(1),,
(2)160名
(3)八年级阅读积极性更高.理由:七年级和八年级阅读时长平均数一样,八年级阅读时长的众数和中位数都比七年级高(合理即可)
【分析】(1)根据众数、中位数、百分比的意义求解即可;
(2)用400名学生乘七年级在主题周活动期间课外阅读时长在9小时及以上所占的百分比即可求解;
(3)根据七年级阅读时长为8小时及以上所占百分比比八年级高进行分析即可.
【详解】(1)解:∵七年级学生阅读时长出现次数最多是8小时
∴众数是8,即
∵将八年级学生阅读时长从小到大排列,处在中间位置的两个数的平均数为
∴八年级学生阅读时长的中位数为,即
∵八年级学生阅读时长为8小时及以上的人数为13
∴八年级学生阅读时长为8小时及以上所占百分比为,即
综上所述:,,
(2)解:(名)
答:估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数为160名.
(3)解:∵七年级和八年级阅读时长平均数一样,八年级阅读时长众数和中位数都比七年级高
∴八年级阅读积极性更高(合理即可)
【点睛】本题考查了条形统计图、统计表、众数、中位数等知识点,能够读懂统计图和统计表并理解相关概念是解答本题的关键.
34.(1)B
(2)7;5
(3)90名
【分析】(1)根据随机调查要具有代表性考虑即可求解;
(2)利用加权平均数公式计算,再根据中位数的概念确定这组测试成绩的中位数即可;
(3)根据中位数确定样本中不合格的百分比,再乘以该校初一男生的总人数即可求解.
【详解】(1)解:∵随机调查要具有代表性,
∴从初一所有男生中随机抽取20名男生进行引体向上测试,能较好地反映该校初一男生引体向上的水平状况,
故答案为:B;
(2)解:;
这组数据排序后,中位数应该是第10,11两个人成绩的平均数,而第10,11两人的成绩都是5,
∴这组测试成绩的中位数为,
故答案为:7;5
(3)解:以(2)中测试成绩的中位数5作为该校初一男生引体向上的合格标准,则这组测试成绩不合格的人数有3人,
∴不合格率为 ,
∴该校初一男生不能达到合格标准的人数为(名).
【点睛】本题考查了随机调查,中位数,众数以及利用样本估计总体,读懂题意,理解概念是解题的关键.
35.(1)80,,20
(2)大约有800人
【分析】(1)根据“总体=部分÷对应百分比”与“圆心角度数=360°×对应百分比”可求得样本容量及B项活动所在扇形的圆心角度数,从而求得C项活动的人数;
(2)根据“部分=总体×对应百分比”,用总人数乘以样本中“参观学习”的人数所占比例可得答案.
【详解】(1)解:样本容量:16÷20%=80(人),
B项活动所在扇形的圆心角:,
C项活动的人数:80-32-12-16=20(人);
故答案为:80,54°,20;
(2)解:(人),
答:该校意向参加“参观学习”活动的学生大约有800人.
【点睛】本题主要考查了条形统计图,扇形统计图,用样本估计总体,读懂图,找出对应数据,熟练掌握总体、部分与百分比之间的关系是解题的关键.
36.(1)100,图形见解析
(2)72,C;
(3)估计该校每天完成书面作业不超过90分钟的学生有1710人.
【分析】(1)根据C组的人数和所占的百分比,可以计算出本次调查的人数,然后即可计算出D组的人数,从而可以将条形统计图补充完整;
(2)根据统计图中的数据,可以计算出B组的圆心角的度数,以及中位数落在哪一组;
(3)根据题意和统计图中的数据,可以计算出该校每天完成书面作业不超过90分钟的学生人数.
【详解】(1)这次调查的样本容量是:25÷25%=100,
D组的人数为:100-10-20-25-5=40,
补全的条形统计图如图所示:
故答案为:100;
(2)在扇形统计图中,B组的圆心角是:360°×=72°,
∵本次调查了100个数据,第50个数据和51个数据都在C组,
∴中位数落在C组,
故答案为:72,C;
(3)1800×=1710(人),
答:估计该校每天完成书面作业不超过90分钟的学生有1710人.
【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.
37.(1)200
(2)30,50
(3)画图见解析
【分析】(1)由D组有10人,占比,从而可得总人数;
(2)由A,B组各自的人数除以总人数即可;
(3)先求解C组的人数,再补全图形即可.
【详解】(1)解:(人),
所以本次调查的学生共200人,
故答案为:200
(2)
所以
故答案为:30,50
(3) C组有(人),
所以补全图形如下:
【点睛】本题考查的是从条形图与扇形图中获取信息,求解扇形图中某部分所占的百分比,补全条形图,掌握以上基础统计知识是解本题的关键.
38.(1)9
(2)108º
(3)90
【分析】(1)由随机调查的八年级20名学生读书数量的数据直接得出m的值;
(2)根据读书数量在对应人数求出百分比再乘以360︒即可得到对应的圆心角;
(3)利用样本估计总体的思想解决问题即可.
【详解】(1)解:满足的本数有3和4,这样的数据有9个,所以m=9;
故答案为:9.
(2)解:,360º×30%=108º,
故答案为:108º.
(3)解:∵20人中共有6+3=9名学生读书在4本以上,
∴200××100%=90(人)
答:该校八年级学生读书在4本以上的人数为90人.
【点睛】本题考查扇形统计图,样本估计总体的思想,频数分布等知识,解题的关键是熟练掌握基本知识,理解样本和总体的关系.
39.(1)40,10
(2)平均数是2,众数是2,中位数是2
【分析】(1)根据参加2项的人数和所占百分比即可求得总人数,再利用×100%=百分比,即可求解.
(2)根据平均数、众数及中位数的含义即可求解.
【详解】(1)解:由图可得,参加2项的人数有18人,占总体的45%,参加4项的有4人,
则(人),,
故答案为:40;10.
(2)平均数:,
∵在这组数据中,2出现了18次,出现的次数最多,
∴这组数据的众数是2,
∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是2,有,
∴这组数据的中位数是2.
则平均数是2,众数是2,中位数是2.
【点睛】本题考查了条形统计图和扇形统计图,平均数、众数和中位数的求法,理解两个统计图中的数量关系是解题的关键.
40.(1)200,30
(2)补全图形见解析
(3)1600人
【分析】(1)利用活动天数为2天的人数占比,可得总人数,再扇形图的信息可得n的值;
(2)先求解活动3天的人数,再补全图形即可;
(3)由2000乘以活动4天及以上部分所占的百分比即可得到答案.
【详解】(1)解:由题意可得:(人),
故答案为:200,30
(2)活动3天的人数为:(人),
补全图形如下:
(3)该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数为:
(人).
答:估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的有1600人.
【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形图,利用样本估计总体,理解题意,获取两个图中相关联的信息是解本题的关键.
41.(1)50
(2)240
(3)见解析
【分析】(1)利用B中的人数除以所占的百分比即可求解;
(2)先利用总人数减掉A、B、C、E的人数求得D人数,用学生总人数乘以D选项的百分比即可求解;
(3)从条形图中人数的分布情况即可解答.
【详解】(1)解:所抽取的学生总人数为(人),
(2)解:D选项的人数为:(人),
∴(人),
∴该校学生参与家务劳动的时间满足的人数为240人;
(3)解:A,B,C,D,E五个选项中,各自的百分比为:
,,,,,
根据五个选项所占的百分比可知,劳动时间在之间的学生占10%,劳动时间在之间的学生最多,占总人数的36%,劳动时间在之间的学生占总人数的30%,劳动时间在之间的学生占总人数的20%,劳动时间在之间的学生占总人数的4%.可得“五·一”小长假期间参与家务劳动的时间普遍较少,参加家务劳动的时间不少于4h的学生仅占总人数的4%,应把劳动教育融入家庭教育,让家长要求孩子多多参加家务劳动.
【点睛】本题考查了条形统计图和扇形统计图,识图是解题的关键.
42.(1)抽取参加调查的学生人数为40人
(2)统计图见解析
(3)估计该校报兴趣类社团的学生人数有200人
【分析】(1)从两个统计图中可知,报兴趣类社团有5人,占调查人数的12.5%,可求出抽取参加调查的学生人数;
(2)求出报体育类社团的人数即可补全条形统计图,求出文艺类和阅读类所占百分比可补全扇形统计图;
(3)用1600去乘报兴趣类社团的学生所占的比例即可.
【详解】(1)解:5÷12.5%=40(人)
答:抽取参加调查的学生人数为40人.
(2)解:40×25%=10(人),补全条形统计图如图所示:
=37.5%,,补全扇形统计图如图所示:
(3)解:1600×12.5%=200(人)
答:估计该校报兴趣类社团的学生人数有200人.
【点睛】此题考查了条形统计图、扇形统计图的意义和制作方法以及用样本估计总体,解题的关键是从两个统计图中获取数量和数量关系式.
43.(1)300;
(2)见解析;
(3)①1;0;②见解析
【分析】(1)将表1中“双减前”各个数据求和确定m的值,然后再计算求得n值,从而求解;
(2)通过汇总表1和图1求得“双减后”报班数为3的学生人数,从而求解百分比;
(3)①根据中位数和众数的概念分析求解;②根据“双减”政策对学生报班个数的影响结果角度进行分析说明.
【详解】(1)解:由题意得,,解得,
∴,
故答案为:300;
(2)汇总表1和图1可得:
0
1
2
3
4及以上
总数
“双减”前
172
82
118
82
46
500
“双减”后
423
24
40
12
1
500
∴“双减”后报班数为3的学生人数所占的百分比为;
(3)“双减”前共调查500个数据,从小到大排列后,第250个和第251个数据均为1,
∴“双减”前学生报班个数的中位数为1,
“双减”后学生报班个数出现次数最多的是0,
∴“双减”后学生报班个数的众数为0,
故答案为:1;0;
②从“双减”前后学生报班个数的变化情况说明:“双减”政策宣传落实到位,参加校外培训机构的学生大幅度减少,“双减”取得了显著效果.
【点睛】本题考查统计的应用,理解题意,对数据进行采集和整理,掌握中位数和众数的概念是解题关键.
44.(1)200人;36°
(2)见解析
(3)400人
【分析】(1)从两个统计图中可知,在抽查人数中,选择“体育运动”兴趣小组的人数为60人,占调查人数的30%,可求出调查人数,样本中选择“美工制作”兴趣小组占调查人数的,即10%,因此相应的圆心角的度数为360°的30%;
(2)求出选择“音乐舞蹈”兴趣小组的人数,即可补全条形统计图;
(3)用1600乘以样本中选择“爱心传递”兴趣小组的学生所占的百分比即可.
【详解】(1)解:本次被抽查学生的总人数是(人),
扇形统计图中表示选择“美工制作”兴趣小组的扇形的圆心角度数是;
(2)解:选择“音乐舞蹈”兴趣小组的人数为200-50-60-20-40=30(人),
补全条形统计图如图所示.
(3)解:估计全校选择“爱心传递”兴趣小组的学生人数为(人).
【点睛】本题考查了扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量和数量之间的关系,是解决问题的前提,样本估计总体是统计中常用的方法.
45.(1)C
(2)补全频数分布直方图见解析;
(3)3
(4)160人
(5)七年级一周参加家庭劳动的次数偏少,故学校应该加强学生的劳动教育.(答案不唯一)
【分析】(1)根据抽样调查的要求判断即可;
(2)根据频数分布表的数据补全频数分布直方图即可;
(3)根据中位数的定义进行解答即可;
(4)用样本的比估计总体的比进行计算即可;
(5)根据平均数、中位数和众数的意义解答即可.
【详解】(1)解:∵抽样调查的样本要具有代表性,
∴兴趣小组计划抽取该校七年级20名学生进行问卷调查,合理的是从该校七年级学生中随机抽取男、女各10名学生,
故选:C
(2)解:补全频数分布直方图如下:
(3)解:∵被抽取的20名学生每人一周参加家庭劳动的次数从小到大排列后为:0 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 6 6 ,排在中间的两个数分别为3、3,
∴中位数a=,
故答案为:3;
(4)解:由题意可知,被抽取的20名学生中达到平均水平及以上的学生人数有8人,
400×=160(人),
答:该校七年级学生每周参加家庭劳动的次数达到平均水平及以上的学生为160人;
(5)解:根据以上数据可知,七年级一周参加家庭劳动的次数偏少,故学校应该加强学生的劳动教育.(答案不唯一)
【点睛】此题考查条形统计图、中位数、众数、用样本估计总体等知识,解答本题的关键是明确题意,利用数形结合的思想来解答.
46.(1)①③②④
(2)D
(3)估计该校八年级至少应该开设5个趣味数学班.
【分析】(1)根据正确的工作步骤填空即可;
(2)根据抽样调查的可靠性解答可得;
(3)用八年级的总人数分别乘以选择趣味数学班的学生所占的百分比即可求解.
【详解】(1)解:张老师的工作步骤,先抽取40名学生作为调查对象;收集40名学生对四门课程的选择意向的相关数据:整理数据并绘制统计图;最后结合统计图分析数据并得出结论.
故答案为:①③②④;
(2)解:取样方法中,合理的是:D.随机抽取八年级40名学生,
故选:D;
(3)解:1000名学生选择B.越味数学的人数有:1000×=200(名),
200÷40=5(个)
估计该校八年级至少应该开设5个趣味数学班.
【点睛】本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
47.(1)C
(2)112分钟
(3)912人
【分析】(1)根据中位数的定义可知中位数落在C组;
(2)根据加权平均数的公式计算即可;
(3)用样本估计总体即可.
【详解】(1)解:由题意可知,100名学生的“劳动时间”的中位数是第50、51个数,
故本次调查数据的中位数落在C组,
故答案为:C;
(2)解:(分钟),
∴这100名学生的平均“劳动时间”为112分钟;
(3)解:∵(人),
∴估计在该校学生中,“劳动时间”不少于90分钟的有912人.
【点睛】本题考查了统计的知识,解题的关键是仔细读图,并从中找到进一步解题的有关信息,难度不大.
48.(1)见解析
(2)估计喜爱火腿粽的有546人.
【分析】(1)用喜爱鲜花粽的人数除以它所占的百分比得到调查的总人数,再计算喜爱火腿粽的人数后,即可补全条形统计图;
(2)用1820乘以30%可估计喜爱火腿粽的的大约人数;
【详解】(1)解:这次随机调查中被调查到的人数是70÷35%=200(人),
喜爱火腿粽的人数为:200-70-40-30=60(人),
补全条形图如下:
;
(2)解:估计喜爱火腿粽的有1820×30%=546(人);
答:估计喜爱火腿粽的有546人.
【点睛】此题考查了扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.
49.(1)55天
(2)第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒
(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)
【分析】(1)根据图中的信息可知这5期的集训各有多少天,求出它们的和即可;
(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步时间可由折线统计图计算;
(3)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.
【详解】(1)∵(天).
∴这5期的集训共有55天.
(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,
进步了(秒),
∴第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.
(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)
【点睛】本题考查条形统计图、折线统计图、算术平均数,解答本题的关键是明确题意,利用数形结合的思想解答.
相关试卷
这是一份中考数学二轮复习专题20三角形存在问题含解析答案,共39页。
这是一份中考数学二轮复习专题19概率含解析答案,共35页。试卷主要包含了彩民李大叔购买1张彩票,中奖,下列说法正确的是,下列事件中,属于必然事件的是等内容,欢迎下载使用。
这是一份中考数学专项训练(20)专题胡不归模型含解析答案,共32页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。