







所属成套资源:浙教版数学七年级上册 课件
数学七年级上册2.3 有理数的乘法课文ppt课件
展开
这是一份数学七年级上册2.3 有理数的乘法课文ppt课件,共20页。PPT课件主要包含了用数轴表示为,①两数同正,②两数异号,③两数同负,④至少一个因数为零,①同正两数相乘如,②异号两数相乘如,同负两数相乘如,×-3,×36等内容,欢迎下载使用。
小学学过乘法的意义可知:3×2 表示2个3相加,即3+3
类比有理数加法,两个有理数相乘 a×b, 有哪些情况?
(-2)×(-3)= ?
(-2)× 0 = ?
它可能表示的意义:2个(-3)相加
(+2)×(+3)=
(- 2)×(+3)=
(- 2)×(- 3)=
(+ 2)×(- 3)=
综合如下:(1)(+2)×(+3)= + 6 (2)(-2)×(-3)= + 6 (3)(-2)×(+3)= - 6(4)(+2)×(-3)= - 6(5)任何数同0相乘
两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0。
由以上几个式子我们可以得知:
1、确定下列积的符号:(1) 5×(-3) (2) (-4)×6(3) (-7)×(-9)(4) 0.5×0.7
积的符号为负积的符号为负积的符号为正积的符号为正
2、用“>” “<” “=”号填空
(1)( - 4)×(- 7 ) 0
(2)( - 5)×(+ 4) 0
(2) (+1.75)×(−16)
运算中的第一步是______________。
第二步是______________。
计算:1. (-4) ×5=2. (-5) ×(-7)=3. 7 ×(-7)=4. (+4) ×(-9)=
多个不为0的有理数相乘时的运算步骤
再进行绝对值的乘法运算
若其中一个乘数为0,则积为0。
计算下列各题,你发现什么?1.(- 1)×2 ×(- 3)2. (- 1)×2 ×(- 3) ×43. (-1)×2 ×(-3)×4 ×(-5)
几个不等于0的数相乘,积的符号由负因数的个数决定;负因数的个数为奇数时,积为负;负因数的个数为偶数时,积为正。
观察下列各式,它们的积大于零、小于零、还是等于零?(1)(-1) ×2 ×3 ×4 (2) (-1) ×(-2 )×3 ×4(3) (-1) ×(-2 )×(-3 )×4 (4) (-1) ×(-2 )×(-3 )×(-4)(5) (-1) ×(-2 )×(-3 )×(-4)×0
一个数与1相乘,积为它本身;一个数与(-1)相乘,积为它的相反数。
这些运算中,它们的积有什么共同特点?
分析:欲求某数的倒数,就是要确定与这个数相乘积为1的数是什么。
求小数的倒数时,要先把小数化成分数;求带分数的倒数时,要先把带分数化成假分数。
∴- 3的倒数是 。
∴ 的倒数是 。
∴ 0.2的倒数是5。
(2)求分数的倒数,先把带分数化成假分数, 只要把假分数的分子,分母颠倒位置即可。
(1)互为倒数的两个数符号相同。
1、有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同零相乘都得零。
特别地: 一个数与1相乘,积为它本身; 一个数与(-1)相乘,积为它的相反数。
4、若两个有理数的乘积为1,则这两个有理数互为倒数,(零没有倒数)。
3、几个有理数相乘,积的符号由负因数的个数决定
2、有理数乘法的一般步骤:先确定积的符号,再把绝对值相乘。
奇数个为负,偶数个为正。
1、若a的相反数是1.5,则a的倒数为( )
2、两个有理数和为0,积为负,则这两个数的关系是( )
A 两个数均为0, B 两个数中一个为0C 两数互为相反数, D 两数互为相反数,但不为0。
相关课件
这是一份初中浙教版2.3 有理数的乘法背景图ppt课件,共20页。PPT课件主要包含了负因数的个数,想一想,算一算,-6×-4,×12,-6+-1,a×b=b×a,乘法交换律,乘法结合律,分配律等内容,欢迎下载使用。
这是一份浙教版七年级上册2.3 有理数的乘法教学课件ppt,共16页。PPT课件主要包含了学习目标,甲水库,乙水库,=-3×4=,在原地运动5次,向左方运动0次,综合如下,同号相乘积为正数,异号相乘积为负数,同号两数乘等内容,欢迎下载使用。
这是一份初中浙教版2.3 有理数的乘法教学ppt课件,共17页。PPT课件主要包含了知识回顾,负因数的个数,a×b=b×a,-6×-4,×12,-6+-1,有理数乘法的运算律,例1计算,课内练习,例2计算等内容,欢迎下载使用。
