所属成套资源:中考数学二轮复习专项试题含解析答案
中考数学二轮复习专题22函数与公共点问题含解析答案
展开
这是一份中考数学二轮复习专题22函数与公共点问题含解析答案,共25页。试卷主要包含了已知抛物线,已知二次函数的图像经过两点,我们不妨约定,抛物线交x轴于A,B两点,背景等内容,欢迎下载使用。
1.如图,抛物线y=x2+2x+c与x轴的正半轴交于点B,与x轴的负半轴交于点A,与y轴的负半轴交于点C,且OA=2OB.
(1)求抛物线的解析式及顶点坐标;
(2)将抛物线y=x2+2x+c在点A,C之间的部分(含A,C两点)记为G,若二次函数y=-x2-2x+m的图象与G只有一个公共点,求m的取值范围.
2.已知抛物线
(1)当时,请判断点(2,4)是否在该抛物线上;
(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;
(3)已知点、,若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.
3.已知二次函数的图像经过两点.
(1)求b的值.
(2)当时,该函数的图像的顶点的纵坐标的最小值是________.
(3)设是该函数的图像与x轴的一个公共点,当时,结合函数的图像,直接写出a的取值范围.
4.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于轴对称,则把该函数称之为“T函数”,其图象上关于轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.
(1)若点与点是关于的“T函数”的图象上的一对“T点”,则______,______,______(将正确答案填在相应的横线上);
(2)关于的函数(,是常数)是“T函数”吗?如果是,指出它有多少对“T点”;如果不是,请说明理由;
(3)若关于的“T函数”(,且,,是常数)经过坐标原点,且与直线(,,且,是常数)交于,两点,当,满足时,直线是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.
5.在平面直角坐标系中,抛物线与轴交于点和点,顶点坐标记为.抛物线的顶点坐标记为.
(1)写出点坐标;
(2)求,的值(用含的代数式表示);
(3)当时,探究与的大小关系;
(4)经过点和点的直线与抛物线,的公共点恰好为3个不同点时,求的值.
6.抛物线交x轴于A,B两点(A在B的左边).
(1)的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上.
①如图(1),若点C的坐标是,点E的横坐标是,直接写出点A,B的坐标;
②如图(2),若点D在抛物线上,且的面积是12,求点E的坐标;
(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点,若直线l与抛物线只有一个公共点,求证的值是定值.
7.已知函数的图象如图所示,点在第一象限内的函数图象上.
(1)若点也在上述函数图象上,满足.
①当时,求的值;
②若,设,求w的最小值;
(2)过A点作y轴的垂线,垂足为P,点P关于x轴的对称点为,过A点作x轴的线,垂足为Q,Q关于直线的对称点为,直线是否与y轴交于某定点?若是,求出这个定点的坐标;若不是,请说明理由.
8.背景:点A在反比例函数的图象上,轴于点B,轴于点C,分别在射线上取点,使得四边形为正方形.如图1,点A在第一象限内,当时,小李测得.
探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.
(1)求k的值.
(2)设点的横坐标分别为,将z关于x的函数称为“Z函数”.如图2,小李画出了时“Z函数”的图象.
①求这个“Z函数”的表达式.
②补画时“Z函数”的图象,并写出这个函数的性质(两条即可).
③过点作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.
评卷人
得分
一、解答题
评卷人
得分
二、作图题
参考答案:
1.(1)y=x2+2x-8,(-1,-9).
(2)-8
相关试卷
这是一份中考数学二轮复习专题41几何问题之动点问题含解析答案,共67页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份中考数学二轮复习专题41几何问题之动点问题含解析答案,共67页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份中考数学专项训练(22)专题瓜豆原理——主从动点问题含解析答案,共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。