初中数学人教版九年级上册24.1.1 圆优秀课时作业
展开1.已知⊙O中最长的弦为8cm,则⊙O的半径为( )cm.
A.2B.4C.8D.16
2.如图,是的直径,是的弦,已知,则的度数为( )
A.20°B.30°C.40°D.50°
3.如图,AB是⊙O的直径,点C在⊙O上,∠ABC=30°,AC=4,则⊙O的半径为( )
A.4B.8C.2D.4
4.如图,为的直径,点C为上的一点,过点C作的切线,交直径的延长线于点D;若,则的度数是( )
A.23°B.44°C.46°D.57°
5.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm为半径作圆.则图中阴影部分面积为( )
A.(2-π)cm2B.(π-)cm2C.(4-2π)cm2D.(2π-2)cm2
6.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB的度数为( )
A.60°B.45°C.30°D.25°
7.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是( )
A.点P在⊙O外B.点P在⊙O内
C.点P在⊙O上D.点P在⊙O上或在⊙O外
8.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为( )
A.相离B.相切C.相交D.相切、相交均有可能
9.如图,△ABC的内切圆⊙O分别与AB,BC,AC相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )
A.16B.14C.12D.10
10.如图,在矩形ABCD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为( )
A.4B.C.5D.
11.一条弦把圆弧分成1:3两个部分,已知圆的半径为10cm,则弦心距为 .
12.如图,直线l与⊙O相切于点A,作半径OB并延长至点C,使得BC=OB,作CD⊥直线l于点D,连接BD得∠CBD=75°,则∠OCD= 度.
13.用一根铁丝做成一个正方形,使它恰好能嵌入一个直径为20cm的圆中,如图所示,则这根铁丝的长度是 cm.
14.如图,已知在△ABC中,AB=AC=12.以AB为直径作半圆O,交BC于点D.若∠BAC=30°,则的长 .
15.如图,在中,弦,,垂足为C,,则的半径为 .
16.在⊙O中,直径AB=4,弦CD⊥AB于P,OP=,则弦CD的长为 .
17.一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为 cm.
18.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B,点 B 的坐标为(﹣,0),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是 .
19.如图,点A、B、C、D在⊙O上,∠ADC=60°,.请判断△ABC的形状,并说明理由.
20.如图,△ABC是⊙O的内接三角形,BC=4,∠A=30°,求⊙O的直径.
21.如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD⊥CF于为点D,BD与半圆O交于点E,
(1)求证:BC平分∠ABD
(2)若DC=8,BE=4,求圆的直径.
22.如图,正方形ABCD的边长为2,点E在边AD上(不与A,D重合),点F在边CD上,且∠EBF=45°,若△ABE的外接圆⊙O与CD边相切.
(1)求⊙O的半径长;
(2)求△BEF的面积.
23.某小区一块长方形的绿地的造型如图所示(单位:m),其中两个扇形表示绿地,两块绿地用五彩石隔开,那么需铺多大面积的五彩石?(保留π)
24.如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C
(1)求证:AE与⊙O相切于点A;
(2)若AE∥BC,BC=2,AC=2,求AD的长.
25.如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°.点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.
(1)如图1,当DE与⊙O相切时,求∠CFB的度数;
(2)如图2,当点F是CD的中点时,求△CDE的面积.
评卷人
得分
一、单选题
评卷人
得分
二、填空题
评卷人
得分
三、解答题
初中数学24.1.1 圆精品复习练习题: 这是一份初中数学24.1.1 圆精品复习练习题,共26页。
数学22.1.1 二次函数优秀一课一练: 这是一份数学22.1.1 二次函数优秀一课一练,共8页。试卷主要包含了抛物线的共同性质是,二次函数的图象与轴的交点是,在下列抛物线中,开口最小的是等内容,欢迎下载使用。
初中苏科版2.1 圆精品综合训练题: 这是一份初中苏科版2.1 圆精品综合训练题,共23页。试卷主要包含了如图,已知点A等内容,欢迎下载使用。