北师大版九年级数学下册 专题3.31 圆中的几何模型-隐形圆专题(专项练习)(附答案)
展开1.如图,在等腰Rt∆ABC中,,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( )
A.B.2C.D.4
2.如图,在中,,cm,cm.是边上的一个动点,连接,过点作于,连接,在点变化的过程中,线段的最小值是( )
A.1B.C.2D.
3.如图,是等腰直角三角形,正方形绕点A逆时针旋转,再延长交于G,以下结论中:①;②;③当,时,,正确的有( )
A.3个B.2个C.1个D.都不对
4.如图,在△ABC中,∠ACB=90°,AC=BC,AB=4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为( )
A.2B.πC.2πD.π
5.如图,△ACB中,CA=CB=4,∠ACB=90°,点P为CA上的动点,连BP,过点A作AM⊥BP于M.当点P从点C运动到点A时,线段BM的中点N运动的路径长为( )
A.πB.πC.πD.2π
二、填空题
6.如图,在平面直角坐标系中,有一条长为10的线段AB,其端点A、点B分别在y轴、x轴上滑动,点C为以AB为直径的⊙D上一点(C始终在第一象限),且tan∠BAC=.则当点A从A0(0,10)滑动到O(0,0),B从O(0,0)滑动到B0(10,0)的过程中,点C运动的路径长为_____.
7.如图,扇形AOB,且OB=4,∠AOB=90°,C为弧AB上任意一点,过C点作CD⊥OB于点D,设△ODC的内心为E,连接OE、CE,当点C从点B运动到点A时,内心E所经过的路径长为 ________.
8.如图,的半径为4,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为 __.
9.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,D是BC上一动点,连接AD,过点C作CE⊥AD于E,过点E作EF⊥AB交BC于点F,则CF的最大值是 __________________.
10.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿半圆从点A运动至点B时,点M运动的路径长是___.
11.如图,△ABC为等边三角形,AB=2,若P为△ABC内一动点,且满足∠PAB=∠ACP,则点P运动的路径长为_________.
12.如图,在矩形中,,,是矩形内部的一个动点,且,则线段的最小值为______.
13.如图,正方形ABCD,边长为4,点P和点Q在正方形的边上运动,且PQ=4,若点P从点B出发沿B→C→D→A的路线向点A运动,到点A停止运动;点Q从点A出发,沿A→B→C→D的路线向点D运动,到达点D停止运动.它们同时出发,且运动速度相同,则在运动过程中PQ的中点O所经过的路径长为_____.
14.△ABC中,AB=4,AC=2,以BC为边在△ABC外作正方形BCDE,BD、CE交于点O,则线段AO的最大值为______.
15.如图,Rt△ABC中,∠ACB=90°,∠CAB=60°,AB=4,点P是BC边上的动点,过点c作直线记的垂线,垂足为Q,当点P从点C运动到点B时,点Q的运动路径长为_______.
16.如图,矩形ABCD中,AB=8,BC=12,以D为圆心,4为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,使∠EAF=90°,tan∠AEF=,则点F与点C的最小距离为________.
三、解答题
17.如图,正方形ABCD中,AB=,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.
(1)求证:AE=CF;
(2)若A,E,O三点共线,连接OF,求线段OF的长.
(3)求线段OF长的最小值.
18.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
⑴ 求证:△AMB≌△ENB;
⑵ ①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
⑶ 当AM+BM+CM的最小值为时,求正方形的边长.
19.如图,是的直径,,点C为上一点,,点为上一动点,点是的中点,求的最小值.
20.在平面直角坐标系中,如图所示,,.点P从点O出发在线段上以每秒1个单位的速度向点A运动,同时点Q从点B出发在线段上以每秒2个单位的速度向点C运动.其中一个点到达终点时,停止运动,连接.
(1)如图1,连接交于点D,则点D的坐标为________;
(2)如图2,过A作于点H,求的最小值;
(3)如图3,在上取一点M,使得,那么点M的纵坐标是否存在最大值,若存在,求出此时的长;若不存在,说明理由.
21.在平行四边形ABCD中,已知∠A=45°,AD⊥BD,点E为线段BC上的一点,连接DE,以线段DE为直角边构造等腰RtDEF,EF交线段AB于点G,连接AF、DG.
(1)如图1,若AB=12,BE=5,则DE的长为多少?
(2)如图2,若点H,K分别为线段BG,DE的中点,连接HK,求证:AG=2HK;
(3)如图3,在(2)的条件下,若BE=2,BG=2,以点G为圆心,AG为半径作⊙G,点M为⊙G上一点,连接MK,取MK的中点P,连接AP,请直接写出线段AP的取值范围.
22.问题发现:
(1)正方形ABCD和正方形AEFG如图①放置,AB=4,AE=2.5,则=___________.
问题探究:
(2)如图②,在矩形ABCD中,AB=3,BC=4,点P在矩形的内部,∠BPC=135°,求AP长的最小值.
问题拓展:
(3)如图③,在四边形ABCD中,连接对角线AC、BD,已知AB=6,AC=CD,∠ACD=90°,∠ACB=45°,则对角线BD是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
23.如图,已知正方形ABCD的边长为4、点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG、顶点G在线段PC上,对角线EG、PF相交于点O.
(1)若AP=1,则AE= ;
(2)①点O与△APE的位置关系是 ,并说明理由;
②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;
(3)在点P从点A到点B的运动过程中,线段AE的大小也在改变,当AP= ,AE达到最大值,最大值是 .
24.中,,,于,点在线段上,点在射线上,连,,满足.
(1)如图1,若,,求的长;
(2)如图2,若,求证:;
(3)如图3,将绕点逆时针旋转()得到,连,点为的中点,连接,若,.当最小时,直接写出的面积.
参考答案
1.B
分析:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,利用等腰直角三角形的性质得到AB=BC=8,则OC=AB=4,OP=AB=4,再根据等腰三角形的性质得OM⊥PC,则∠CMO=90°,于是根据圆周角定理得到点M在以OC为直径的圆上,由于点P点在A点时,M点在E点;点P点在B点时,M点在F点,则利用四边形CEOF为正方得到EF=OC=4,所以M点的路径为以EF为直径的半圆,然后根据圆的周长公式计算点M运动的路径长.
详解:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=4,∴AB=BC=8,∴OC=AB=4,OP=AB=4.
∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=4,∴M点运动的路径为以EF为直径的半圆,∴点M运动的路径长=•4π=2π. 故选B.
点拨:本题考查了轨迹:点按一定规律运动所形成的图形为点运动的轨迹.解决此题的关键是利用等腰三角形的性质和圆周角定理确定M点的轨迹为以EF为直径的半圆.
2.A
【分析】由∠AEC=90°知,点E在以AC为直径的⊙M的上(不含点C、可含点N),从而得BE最短时,即为连接BM与⊙M的交点(图中点E′点),BE长度的最小值BE′=BM−ME′.
解:如图,
由题意知,,
在以为直径的的上(不含点、可含点,
最短时,即为连接与的交点(图中点点),
在中,,,则.
,
长度的最小值,
故选:.
【点拨】本题主要考查了勾股定理,圆周角定理,三角形的三边关系等知识点,难度偏大,解题时,注意辅助线的作法.
3.B
【分析】根据等腰直角三角形的性质及正方形的性质易得△BAD≌△CAF,从而易得①②正确;取BC的中点O,连接OG、OA,则由直角三角形斜边上中线的性质可得OG是BC的一半,即为定值,故可得点G的运动路径是以O为圆心OG长为半径一段圆弧上运动,从而BG的长度不是固定的,因此可对③作出判定.
解:(1)∵四边形ADEF是正方形
∴AD=AF,∠DAF=∠DAC+∠CAF=90゜
∵△ABC是等腰直角三角形,∠BAC=90゜
∴AB=AC
∴∠BAD+DAC=90゜
∴∠BAD=∠CAF
在△BAD和△CAF中
∴△BAD≌△CAF(SAS)
∴BD=CF,∠DBA=∠FCA
设BG与AC交于点M,则∠BMA=∠CMG
∴∠FCA+∠CMG=∠DBA+∠BMA=90゜
∴∠CGM=90゜
∴BD⊥CF
故①②均正确;
如图,取BC的中点O,连接OG、OA
∵BG⊥CF,AB⊥AC
∴OG、OA分别是Rt△GBC、Rt△ABC斜边上的中线
∴
在Rt△ABC中,由勾股定理得
∴
则点G在以O为圆心为半径的一段圆弧上运动,其中点A为此弧的一个端点
所以BG的长变化的,不可能是定值
故③不正确
故选:B.
【点拨】本题综合考查了全等三角形的判定与性质,正方形的性质,勾股定理,直角三角形斜边上中线的性质等知识,对③的判断是比较难,判断出点G的运动路径后问题则迎刃而解.
4.D
解:如图,
∵CA=CB,∠ACB=90°,AD=DB,
∴CD⊥AB,
∴∠ADE=∠CDF=90°,CD=AD=DB,
在△ADE和△CDF中,
,
∴△ADE≌△CDF(SAS),
∴∠DAE=∠DCF,
∵∠AED=∠CEG,
∴∠ADE=∠CGE=90°,
∴A、C、G、D四点共圆,
∴点G的运动轨迹为弧CD,
∵AB=4,ABAC,
∴AC=2,
∴OA=OC,
∵DA=DC,OA=OC,
∴DO⊥AC,
∴∠DOC=90°,
∴点G的运动轨迹的长为π.
故选:D.
5.A
解:设AB的中点为Q,连接NQ,如图所示:
∵N为BM的中点,Q为AB的中点,
∴NQ为△BAM的中位线,
∵AM⊥BP,
∴QN⊥BN,
∴∠QNB=90°,
∴点N的路径是以QB的中点O为圆心,AB长为半径的圆交CB于D的,
∵CA=CB=4,∠ACB=90°,
∴ABCA=4,∠QBD=45°,
∴∠DOQ=90°,
∴为⊙O的周长,
∴线段BM的中点N运动的路径长为:π,
故选:A.
6.20﹣6.
【分析】由∠AOB是直角,D为AB的中点,可得DO=5,由∠ACB=,AB=10,可得tan∠BAC=,可得tan∠AOC=tan∠ABC=2.可得点C在与y轴夹角为∠AOC的射线上运动,在计算出C运动的路径长即可.
解:如图①,
连接OD∠AOB是直角,D为AB的中点,DO=5.
原点O始终在OD上,∠ACB=,AB=10,tan∠BAC=.BC=,AC=.
连接OC,则∠AOC=∠ABC, tan∠AOC=tan∠ABC=2. 点C在与y轴夹角为∠AOC的射线上运动.
如图②,
.
如图③,.
总路径长为+=20-,
故答案:20-.
【点拨】本题主要考查三角函数及圆的综合知识,难度较大,求出点C在与y轴夹角为∠AOC的射线上运动是解题的关键.
7.
【分析】根据题意先利用内心的性质求出∠OEC的度数和∠COE=∠BOE,易证△COE≌△BOE,利用全等三角形的性质得∠OEB=∠OEC=135°,从而确定出点E的运动轨迹,则劣弧OB的长即为所求.
解:∵CD⊥OB
∴∠ODC=90°
∵点E是△ODC的内心
∴∠OEC=90°+∠ODC=135°,∠COE=∠BOE
又∵OE=OE,OB=OC
∴△COE≌△BOE
∴∠OEB=∠OEC=135°
∴点E的运动轨迹为:以OB为弦,并且弦OB所对圆周角为135°的一段劣弧.
设经过点O、B、E三点的圆M如图所示,
则∠N=180°-∠OEB=45°
∴∠M=2∠N=90°
∴OM=BM=OB=2
∴劣弧OB的长
∴内心E所经过的路径长为.
故答案为:.
【点拨】本题考查弧长计算,熟练掌握圆的内心的性质和全等三角形的性质是解题的关键.
8.18
【分析】由中知要使取得最小值,则需取得最小值,连接,交于点,当点位于位置时,取得最小值,据此求解可得.
解:连接,
,
,
,
,
若要使取得最小值,则需取得最小值,
连接,交于点,当点位于位置时,取得最小值,
过点作轴于点,
则,,
,
又,
,
,
故答案是:18.
【点拨】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.
9.
【分析】如图,取AC的中点O,连接OE,OF,延长FE交AB于T.证明OE=AC=1,推出点E的在以O为圆心,1为半径的圆上运动,推出当FT与⊙O相切时,CF的值最大.
解:如图,取AC的中点O,连接OE,OF,延长FE交AB于T.
∵∠ACB=90°,AB=4,∠B=30°,
∴∠CAB=60°,AC=AB=2,
∵CE⊥AD,
∴∠AEC=90°,
∵AO=OC=1,
∴OE=AC=1,
∴点E在以O为圆心,1为半径的圆上运动,
∴当FT与⊙O相切时,CF的值最大,
∵直线CF,直线EF都是⊙O的切线,
∴FC=FE,
∴∠FCE=∠FEC,
∵∠CAE+∠ACE=90°,∠ACE+∠ECF=90°,
∴∠CAE=∠FCE,
∵∠CEF+∠AET=90°,∠AET+∠EAT=90°,
∴∠FEC=∠EAT,
∴∠CAE=∠EAT=30°,
∵CF=FE,OC=OE,
∴OF⊥EC,
∵AD⊥CE,
∵OF∥AD,
∴∠COF=∠CAD=30°,
∴CF=OC•tan30°=,
∴CF的最大值为.
故答案为:.
【点拨】本题主要考查直角三角形30°角的性质,直线与圆的位置关系,线段的垂直平分线的性质等知识,解决本题的关键是发现点E在以O为圆心,1为半径的圆上运动,推出当FT与⊙O相切时,CF的值最大.
10.
【分析】如图,连接OP,OC,取OC的中点K,连接MK.由三角形的中位线定理可得KM,推出当点P沿半圆从点A运动至点B时,点M运动的路径是以K为圆心,为半径的半圆,由此即可得出结论.
解:如图,连接OP,OC,取OC的中点K,连接MK.
∵AC=BC,∠ACB=90°,∴AB2,∴OPAB=1.
∵CM=MP,CK=OK,∴MKOP,∴当点P沿半圆从点A运动至点B时,点M运动的路径是以K为圆心,为半径的半圆,∴点M运动的路径长•2•π•.
故答案为.
【点拨】本题考查了轨迹,等腰直角三角形的性质,圆周角定理等知识,解题的关键是学会添加常用辅助线,正确寻找点的运动轨迹.
11.
解:∵△ABC是等边三角形,
∴∠ABC=∠BAC=60°,AC=AB=2,
∵∠PAB=∠ACP,
∴∠PAC+∠ACP=60°,
∴∠APC=120°,
∴点P的运动轨迹是,如图所示:
连接OA、OC,作OD⊥AC于D,
则AD=CDAC=1,
∵所对的圆心角=2∠APC=240°,
∴劣弧AC所对的圆心角∠AOC=360°﹣240°=120°,
∵OA=OC,
∴∠OAD=30°,
∵OD⊥AC,
∴ODAD,OA=2OD,
∴的长为π;
故答案为:π.
12.
【分析】根据,可得到点E的运动轨迹是以AB的中点O为圆心,AB长为直径的圆,连接OC交圆O于点 ,从而得到当点E位于点 位置时,线段CE取最小值,再利用勾股定理即可求解
解:∵,
∴点E的运动轨迹是以AB的中点O为圆心,AB长为直径的圆,如图所示,
连接OC交圆O于点 ,
∴当点E位于点 位置时,线段CE取最小值,
在矩形中,∠ABC=90°,
∵,
∴OA=OB= =1,
∵,
∴ ,
∴
故答案为:
【点拨】本题主要考查了圆周角定理,圆的基本性质及矩形的性质,勾股定理,根据,可得到点E的运动轨迹是以AB的中点O为圆心,AB长为直径的圆是解题的关键
13.
解:画出点O运动的轨迹,如图虚线部分,
则点P从B到A的运动过程中,PQ的中点O所经过的路线长等于3π,
故答案为:3π.
14.
解:如图:以AO为边作等腰直角△AOF,且∠AOF=90°
∵四边形BCDE是正方形
∴BO=CO,∠BOC=90°
∵△AOF是等腰直角三角形
∴AO=FO,AFAO
∵∠BOC=∠AOF=90°
∴∠AOB=∠COF,且BO=CO,AO=FO
∴△AOB≌△FOC(SAS)
∴AB=CF=4
若点A,点C,点F三点不共线时,AF<AC+CF;
若点A,点C,点F三点共线时,AF=AC+CF
∴AF≤AC+CF=2+4=6
∴AF的最大值为6
∵AFAO
∴AO的最大值为3.
故答案为:3
15.
解:∵AQ⊥CQ,
∴∠AQC=90°,
∴当点P从点C运动到点B时,点Q的运动的轨迹是以AC为直径的半圆上,路径是120度的弧长,
在Rt△ABC中,∵AB=4,∠B=30°,
∴ACAB=2,
∴点Q的运动路径长为π
16.4
【分析】如图,取AB的中点G,连接FG,FC,GC,由△FAG∽△EAD,推出FG:DE=AF:AE=1:3,因为DE=4,可得FG=,推出点F的运动轨迹是以G为圆心为半径的圆,再利用两点之间线段最短即可解决问题.
解:如图,取AB的中点G,连接FG.FC.GC.
∵∠EAF=90°,tan∠AEF=,
∴=,
∵AB=8,AG=GB,
∴AG=GB=4,
∵AD=12,
∴,
∴,
∵四边形ABCD是矩形,
∴∠BAD=∠B=∠EAF=90°,
∴∠FAG=∠EAD,
∴△FAG∽△EAD,
∴FG:DE=AF:AE=1:3,
∵DE=4,
∴FG=,
∴点F的运动轨迹是以G为圆心为半径的圆,
∵GC=,
∴FC≥GC−FG,
∴FC≥4,
∴CF的最小值为4.
故答案为:4.
【点拨】本题考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.
17.(1)证明见解析;(2);(3)
【分析】(1)根据旋转的性质,对应线段、对应角相等,可证明△ADE≌△CDF,即可得到AE=CF;
(2)先利用,求得长,再利用,求得,然后设PF=x利用勾股定理求得x的值,即可求得OF的长;
(3)本题考查了利用三角形全等转化的思想解决问题.
解:(1)证明:如图1,由旋转得:,,
四边形是正方形,
,,
,
即,
,
在和中,
,
,
;
(2)解:如图2,过作的垂线,交的延长线于,
是的中点,且,
,,三点共线,
,
由勾股定理得:,
,
,
由(1)知:,
,,
,
,
,
,
,
,
设,则,
由勾股定理得:,
或(舍,
,,
由勾股定理得:,
(3)解:如图3,由于,所以点可以看作是以为圆心,2为半径的半圆上运动,
延长到点,使得,连接,
,,
,
,
当最小时,为、、三点共线,
,
,
的最小值是.
【点拨】本题考查了正方形的性质、几何图形旋转的性质、利用三角形全等解决问题的相关知识,解题关键是注意构造辅助线进行解答.
18.(1)见解析;(2)①当M点落在BD的中点时;②当M点位于BD与CE的交点处时,AM+BM+CM的值最小,理由见解析;(3)
解:⑴∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠BMA=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS)
⑵①当M点落在BD的中点时,AM+CM的值最小
②如图,连接CE,当M点位于BD与CE的交点处时,
AM+BM+CM的值最小.
理由如下:连接MN.由⑴知,△AMB≌△ENB,
∴AM=EN.
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长
⑶过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=90°-60°=30°.
设正方形的边长为x,则BF=x,EF=.
在Rt△EFC中,
∵EF2+FC2=EC2,
∴()2+(x+x)2=
解得,x=(舍去负值).
∴正方形的边长为.
19..
解:如解图,连接、,
∵,,
∴,
∵是的直径,
∴,
∴,
取的中点为,以为圆心,长为半径作圆,则点在圆上.
连接,作于点,连接交于点,则为所求的最小值,
∵,,,
∴,,,
∵,∴,
∴由勾股定理得,
∴,即的最小值为.
20.(1);(2);(3)存在点M纵坐标的最大值,此时OP=1
【分析】(1)有P,Q的运动速度,设时间为t,表示出Q,P的坐标,再求出直线PQ的解析式,直线OB的解析式,联立即可求出点D的坐标;
(2)连接OB与PQ交于点D,由(1)得,连接DA,取DA的中点M,以M为圆心,以DM的长为半径作圆,连接OM,先说明点H在上运动,再由图形得出,三点共线时,OH取得最小值,用勾股定理,即可得出答案;
(3)连接OB,交PQ于点D,以AD为斜边,作等腰直角,以点N为圆心,以2为半径作,说明点M在上,连接MN,过点M作 于点T,连接AN交于于点,可得出即,再求出直线的解析式,求出与x轴的交点即为OP的长.
解:(1)∵四边形ABCD是平行四边形,
∴OA∥BC,
∵,
∴,
∴点C的坐标为,
∵点P从点O出发以每秒1个单位的速度向点A运动,点Q从点B出发以每秒2个单位的速度向点C运动,
∴设时间为m,则,
∴,
设直线PQ的解析式为,
代入解得,
设直线OB的解析式为,
代入点B的坐标,求得,
联立 ,
解得,
故点D的坐标为 ,
故答案为;
(2)连接OB与PQ交于点D,由(1)得,点D(3,2),
连接DA,取DA的中点M,以M为圆心,以DM的长为半径作圆,
∵点D(3,2),点,
∴点M的坐标为,,
∴,
∵,
∴点H在上运动,
连接HM,
由图可知,
,
当三点共线时,取得最小值,
即,
故OH的最小值为;
(3)存在,理由如下,
连接OB,交PQ于点D,以AD为斜边,作等腰直角,以点N为圆心,以2为半径作,则在圆上,与轴相切,
∵,
∴点M在上,
∵与轴相切,在上,
∴
连接MN,过点M作 于点T,连接AN交于于点,
∴
∴
∴,
连接交x轴于点,交于BC与点,
设直线的解析式为,
代入点,,
解得直线的解析式为,
∴当时,,
∴存在点M纵坐标的最大值,此时OP=1.
【点拨】本题考查菱形的性质,一次函数问题,构造三角形求线段最小值,圆的知识,三角形三边关系,坐标与图形,解题关键是熟练掌握相关知识点,能够构造圆进行求解.
21.(1)DE=13;(2)见解析;(3)﹣2≤AP≤+2
【分析】(1)借助三角形全等,求线段的长度.
(2)借助模型“对边平行+中点”构造全等三角形.将AG转化为GM;
(3)主动点M在圆上运动,从动点P也在圆上运动,利用中位线找到P的运动轨迹.
解:(1)∵∠A=45°,且AD⊥BD,
∴∠ADB=90°,
∴△ABD为等腰直角三角形,
又∵,
∴BD=12,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DBE=∠ADB=90°,
在Rt△BED中,BD=12,BE=5,∠DBE=90°,
∴DE= ==13;
(2)如图2,
连接GK,BK,延长BK 交AD于M,连接GM,
∵AD∥BC,
∴∠EBK=∠DMK,∠KEB=∠MDK,
又DK=KE,
∴△BEK≌△MDK(AAS),
∴DK=KE,
又∵BH=GH,
∴KH∥GM,
∵△DEF是等腰直角三角形,
∴∠EDF=∠ADB=90°,DE=DF,∠DFE=∠DEF=45°,
∴∠EDB+∠BDF=∠FDA+∠BDF,
∴∠EDB=∠FDA,
∵∠ADB=90°,∠BAD=45°,
∴∠ABD=90°﹣∠BAD=45°,
∴∠ABD=∠BAD,
∴DB=DA,
∴△ADF≌△BDE(SAS),
∴∠DAF=∠DBE=90°,AF=BE
∵∠DAG=∠DFG=45°,
∴A、F、G、D四点共圆,
∴∠DGE=∠DAF=90°,
在Rt△DGE中,K是DE的中点,
∴GK=DE,
在Rt△DKE 中,
同理可得:KB=DE,
∴GK=KB,
又∵BH=GH,
∴KH⊥BG,
∵KH∥MG,
∴MG⊥AB,
∴∠AGM=90°,
∵∠BAD=45°,
∴∠AMG=∠BAD=45°,
∴AG=GM,
∴KH=GM=AG.
(3)作EN⊥AB于N,
在Rt△BEN中,∠EBN=180°﹣∠ABC=45°,BE=2,
∴EN=BN=,
在Rt△GEN中,GN=GB+BN=3,EN=,
∴GE=2,
∴DE=GE=2,
在Rt△DBE中,BE=2,DE=2,
∴BD=6,
∴AB=BD=6,
∴AG=AB﹣BG=4
连接MG,取GK的中点I,作IQ⊥AB于Q,
∵P是MK的中点,
∴PI==2,
∴点P在以I为圆心,半径为2的⊙I上运动
由(2)知:KH=AG=2,
∵IQ是△KGH的中位线,
∴IQ=KH=,
在Rt△AIQ 中,AQ=AG+GQ=4+=,IQ=KH=,
∴AI=,
∴AI﹣PI≤AP≤AI+PI,
∴﹣2≤AP≤+2.
【点拨】本题主要考查等腰三角形与直角三角形、圆的有关概念及性质、三角形的全等和圆的综合运用,解题关键是确定P点的轨迹并且要灵活运用转化思想、推理能力、模型思想和创新意识.
22.(1);(2)AP的最小值为;(3)存在,BD的最大值为6+6
【分析】(1)连接AC、AF、DG、CF,证△ADG∽△ACF,根据线段比例关系可求;
(2)以BC为斜边作等腰直角三角形BOC,以O为圆心BO为半径画圆,则P的运动轨迹在矩形ABCD内的劣弧BC上,连接AO交弧BC于点P,此时AP最小,根据给出数据求值即可;
(3)以AB为斜边向下做等腰直角三角形AEB,连接CE,根据△DAB∽△CAE,得出BD=CE,以AB为斜边向上做等腰直角三角形AOB,以O为圆心OA为半径画圆,根据C点的轨迹求出CE最大值,即求出BD最大值.
解:(1)如图①,连接AC、AF、DG、CF,
在正方形ABCD和正方形AEFG中,AB=4,AE=2.5,
∴AC=AB,AF=AE,AG=AE=2.5,AD=AB=4,
∴,
又∵∠DAG=∠DAC-∠GAC=45°-∠GAC,∠CAF=∠GAF-∠GAC=45°-∠GAC,
∴∠DAG=∠CAF,
∴△DGA∽△CFA,
∴,
故答案为;
(2)如图②,以BC为斜边作等腰直角三角形BOC,
以O为圆心BO为半径画圆,则∠BPC作为圆周角刚好是135°,
∴P的运动轨迹在矩形ABCD内的劣弧BC上,
连接AO交弧BC于点P,此时AP最小,
作OE垂直AB延长线于点E,
∵△BOC为等腰直角三角形,BC=4,
∴OB=OC=BC=×4=2,∠OBC=45°,
∴∠OBE=90°-∠OBC=90°-45°=45°,
又∵OE⊥AE,
∴△BEO为等腰直角三角形,
∴BE=OE=OB=×2=2,
又∵AB=3,
∴AE=AB+BE=3+2=5,
∴,
∵OP=OB=2,
∴AP=AO-OP=-2,
即AP的最小值为-2;
(3)存在,如图3,以AB为斜边向下做等腰直角三角形AEB,连接CE,
则∠EAB=45°,,
∵AC=AD,∠ACD=90°,
∴DAC=45°,,
∴,∠DAB=∠CAE=45°,
∴△DAB∽△CAE,
∴,
∴BD=CE,
∴当CE最大时,BD取最大值,
以AB为斜边向上做等腰直角三角形AOB,以O为圆心OA为半径画圆,
∵∠AOB=90°,∠ACB=45°,
∴点C在优弧AB上,
由图知当C在OE延长线C'位置时C'E有最大值,
此时C'E=OE+OC',
∵AB=6,△AOB和△AEB都是以AB为斜边的等腰直角三角形,
∴四边形AOBE为正方形,
∴OE=AB=6,OC'=OA=AB=3,
∴CE的最大值为6+3,
∵BD=CE,
∴BD的最大值为×(6+3)=6+6.
【点拨】本题主要考查了图形的变换,三角形相似,等腰直角三角形,正方形,圆周角,圆心角等知识点,熟练掌握并灵活运用这些知识点是解题的关键.
23.(1);(2)①点O在△APE的外接圆上,见解析;②;(3)2,1
解:(1)∵四边形ABCD、四边形PEFG是正方形,
∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,
∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,
∴∠AEP=∠BPC,
∴△APE∽△BCP,
∴,即,
解得:AE;
故答案为:;
(2)①点O在△APE的外接圆上,理由是:
证明:如图1,
取PE的中点Q,连接AQ,OQ,
∵∠POE=90°,
∴OQPE,
∵△APE是直角三角形,
∴点Q是Rt△APE外接圆的圆心,
∴AQPE,
∴OQ=AQ=EQ=PQ,
∴O在以Q为圆心,以OQ为半径的圆上,
即点O在△APE的外接圆上;(到圆心的距离等于半径的点必在此圆上),
故答案为:点O在△APE的外接圆上;
②连接OA、AC,如图2所示,
∵四边形ABCD是正方形,
∴∠B=90°,∠BAC=45°,
∴AC4,
∵A、P、O、E四点共圆,
∴∠OAP=∠OEP=45°,
∴点O在AC上,
当P运动到点B时,O为AC的中点,OAAC=2,
即点O经过的路径长为2;
(3)设AP=x,则BP=4﹣x,
由(1)得:△APE∽△BCP,
∴,
∴,
∴AE(x﹣2)2+1,
∴x=2时,AE的最大值为1,
即当AP=2时,AE的最大值为1.
故答案为:2,1.
24.(1);(2)见解析;(3)
【分析】(1)过点D作DH⊥AC于点H,根据等腰直角三角形的性质可得,再根据勾股定理可求得,由此即可求得答案;
(2)在(1)的辅助线的基础上过点E作EG⊥BD交BC于点G,先证明,由此可得,再证明,由此可得,最后再根据三角形的中位线定理即可得证;
(3)先根据已知条件求得,,然后取的中点O,连接OP,根据三角形的中位线定理可得,进而可得点P在以点O为圆心,2为半径的圆上,如图所示,由此可得当点P在线段OB上时,BP取的最小值,由此再计算的面积即可.
解:(1)解:如图,过点D作DH⊥AC于点H,
∵,,,
∴,,
∵,DH⊥AC,,
∴,,
又∵,
∴,
又∵,,
∴,
∴;
(2)证明:如图,过点E作EG⊥BD交BC于点G,
∵,,
∴,
又∵EG⊥BD,
∴,
∴,,
又∵,
∴,
∵,
∴,
在与中,
∴,
∴,
∵,,
∴,
又∵,
∴,
即:,
在与中,
∴,
∴,
∵,,
∴点H、D分别为AC、AB的中点,
∴HD为的中位线,
∴,
∴,
即;
(3)解:∵,,
∴设,则,
∴,
∴,
∵,
∴,
解得:,
∴,,
∵将绕点逆时针旋转()得到,
∴,
如图,取的中点O,连接OP,
∵点O、P分别为、的中点,
∴,
∴点P在以点O为圆心,2为半径的圆上,如图所示,
∴当点P在线段OB上时,BP取的最小值,
∵点O为的中点,
∴,,
∵在中,,
∴设点C到直线OB的距离为h,则,
∴,
解得:,
∴当最小时,的面积为.
【点拨】本题是一道三角形的综合题,有一定的难度,综合考查了等腰直角三角形的性质,勾股定理的应用,全等三角形的判定与性质,三角形的中位线定理,圆的性质等相关知识,熟练掌握相关图形的性质并能灵活运用是解决本题的关键.
隐形圆及最值问题学案--2024年中考数学几何模型: 这是一份隐形圆及最值问题学案--2024年中考数学几何模型,文件包含隐形圆及最值问题解析版-2024年中考数学几何模型必考点pdf、隐形圆及最值问题学生版-2024年中考数学几何模型必考点pdf等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。
人教版九年级数学上册 24.38 圆中的几何模型-隐形圆(专项练习): 这是一份人教版九年级数学上册 24.38 圆中的几何模型-隐形圆(专项练习),共83页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
北师大版九年级数学下册 专题3.30 圆中的几何模型-隐形圆专题(知识讲解)(附答案): 这是一份北师大版九年级数学下册 专题3.30 圆中的几何模型-隐形圆专题(知识讲解)(附答案),共6页。试卷主要包含了对角互补,四点共圆,定角定弦,轨迹是圆,定点定长,点在圆上,线段滑动,中点在圆上等内容,欢迎下载使用。