终身会员
搜索
    上传资料 赚现金
    2023年广东省深圳市罗湖区华英学校中考模拟数学试题(解析版)
    立即下载
    加入资料篮
    2023年广东省深圳市罗湖区华英学校中考模拟数学试题(解析版)01
    2023年广东省深圳市罗湖区华英学校中考模拟数学试题(解析版)02
    2023年广东省深圳市罗湖区华英学校中考模拟数学试题(解析版)03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年广东省深圳市罗湖区华英学校中考模拟数学试题(解析版)

    展开
    这是一份2023年广东省深圳市罗湖区华英学校中考模拟数学试题(解析版),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    1. 如图所示几何体的俯视图是( ).
    A. B. C. D.
    【答案】A
    【解析】
    【分析】根据俯视图是从物体的上面看得到的视图即可判断.
    【详解】由图可得,几何体的俯视图是
    故选:A.
    【点睛】本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提,画三视图时应注意“长对正,宽相等、高平齐”.
    2. 预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学记数法表示为( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
    【详解】460 000 000=4.6×108.
    故选C.
    【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3. 下列图形中既是轴对称图形,也是中心对称图形的是( )更多优质滋元可 家 威杏 MXSJ663 A. B. C. D.
    【答案】B
    【解析】
    【分析】根据轴对称图形与中心对称图形的概念求解.
    【详解】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;
    B、既是轴对称图形,也是中心对称图形,故此选项符合题意;
    C、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    D、不是轴对称图形,是中心对称图形,故此选项不符合题意.
    故选:B.
    【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    4. 下列命题是假命题的是( )
    A. 有一组邻边相等的矩形是正方形B. 对角线互相平分的四边形是平行四边形
    C. 有三个角是直角的四边形是矩形D. 有一组邻边相等的四边形是菱形
    【答案】D
    【解析】
    【分析】根据特殊平行四边形的判定方法,即可一一判定.
    【详解】解:A.有一组邻边相等的矩形是正方形,正确,故该选项是真命题;
    B.对角线互相平分的四边形是平行四边形,正确,故该选项是真命题;
    C.有三个角是直角的四边形是矩形,正确,故该选项是真命题;
    D.有一组邻边相等的平行四边形是菱形,故该选项说法错误,是假命题;
    故选:D.
    【点睛】本题考查了特殊平行四边形的判定方法,熟练掌握和运用特殊平行四边形的判定方法是解决本题的关键.
    5. 若式子在实数范围内有意义,则的取值范围是( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】根据二次根式里面被开方数即可求解.
    【详解】解:由题意知:被开方数,
    解得:,
    故选:B.
    【点睛】本题考查了二次根式有意义的条件,必须保证被开方数大于等于0.
    6. 如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=( )
    A. 2B. 3C. 4D. 5
    【答案】B
    【解析】
    【分析】根据尺规作图的方法步骤判断即可.
    【详解】由作图痕迹可知AD为∠BAC的角平分线,
    而AB=AC,
    由等腰三角形的三线合一知D为BC重点,
    BD=3,
    故选B
    【点睛】本题考查尺规作图-角平分线及三线合一的性质,关键在于牢记尺规作图的方法和三线合一的性质.
    7. 张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等于七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为根,下等草一捆为根,则下列方程正确的是( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】设上等草一捆为根,下等草一捆为根,根据“卖五捆上等草的根数减去11根,就等于七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.”列出方程组,即可求解.
    【详解】解:设上等草一捆为根,下等草一捆为根,根据题意得:

    故选:C
    【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
    8. 已知、是一元二次方程的两个实数根,下列结论错误的是( )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.
    【详解】x1、x2是一元二次方程x2-2x=0的两个实数根,
    这里a=1,b=-2,c=0,
    b2-4ac=(-2)2-4×1×0=4>0,
    所以方程有两个不相等的实数根,即,故A选项正确,不符合题意;
    ,故B选项正确,不符合题意;
    ,故C选项正确,不符合题意;
    ,故D选项错误,符合题意,
    故选D.
    【点睛】本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键.
    9. 如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )
    A. 3B. C. D.
    【答案】D
    【解析】
    【分析】设光盘圆心为O,连接OC,OA,OB,由AC、AB都与圆O相切,利用切线长定理得到AO平分∠BAC,且OC垂直于AC,OB垂直于AB,可得出∠CAO=∠BAO=60°,得到∠AOB=30°,利用30°所对的直角边等于斜边的一半求出OA的长,再利用勾股定理求出OB的长,即可确定出光盘的直径.
    【详解】如图,设光盘圆心为O,连接OC,OA,OB,∵AC、AB都与圆O相切,
    ∴AO平分∠BAC,OC⊥AC,OB⊥AB,
    ∴∠CAO=∠BAO=60°,
    ∴∠AOB=30°,在Rt△AOB中,AB=3cm,∠AOB=30°,
    ∴OA=6cm,根据勾股定理得:OB=3,则光盘的直径为6,
    故选:D.
    【点睛】本题考查了切线的性质,切线长定理,含30°角的直角三角形的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.
    10. 如图,点是菱形边上的一动点,它从点出发沿在路径匀速运动到点,设的面积为,点的运动时间为,则关于的函数图象大致为
    A. B.
    C. D.
    【答案】B
    【解析】
    【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
    【详解】解:设菱形的高为h,有三种情况:
    ①当P在AB边上时,如图1,
    y=AP•h,
    ∵AP随x的增大而增大,h不变,
    ∴y随x的增大而增大,
    故选项C不正确;
    ②当P在边BC上时,如图2,
    y=AD•h,
    AD和h都不变,
    ∴在这个过程中,y不变,
    故选项A不正确;
    ③当P在边CD上时,如图3,
    y=PD•h,
    ∵PD随x的增大而减小,h不变,
    ∴y随x增大而减小,
    ∵P点从点A出发沿A→B→C→D路径匀速运动到点D,
    ∴P在三条线段上运动的时间相同,
    故选项D不正确,
    故选:B.
    【点睛】本题考查了动点问题的函数图象,菱形的性质,解题的关键是根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式.
    二、填空题
    11. 已知一元二次方程有两个相等的实数根,则的值为________________.
    【答案】9
    【解析】
    【分析】根据根的判别式的意义得到△,然后解关于的方程即可.
    【详解】解:根据题意得△,
    解得.
    故答案为:9.
    【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.
    12. 一个正数的平方根分别是和,则__.
    【答案】2.
    【解析】
    【分析】根据正数的两个平方根互为相反数可得关于x的方程,解方程即可得.
    【详解】根据题意可得:x+1+x﹣5=0,
    解得:x=2,
    故答案为2.
    【点睛】本题主要考查了平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.
    13. 如图,某校教学楼与实验楼的水平间距米,在实验楼顶部点测得教学楼顶部点的仰角是,底部点的俯角是,则教学楼的高度是____米(结果保留根号).
    【答案】(15+15)
    【解析】
    【分析】过点B作BE⊥AC,垂足为E,则∠ABE=30°,∠CBE=45°,四边形CDBE是矩形,继而证明∠CEB=∠CBE,从而可得CE长,在Rt△ABE中,利用tan∠ABE=,求出AE长,继而可得AC长.
    【详解】过点B作BE⊥AC,垂足为E,
    则∠ABE=30°,∠CBE=45°,四边形CDBE是正方形,
    ∴BE=CD=15,
    ∵∠CEB=90°,
    ∴∠ECB=90°-∠CBE=45°=∠CBE,
    ∴CE=BE=15,
    在Rt△ABE中,tan∠ABE=,
    即,
    ∴AE=15,
    ∴AC=AE+CE=15+15,
    即教学楼AC的高度是(15+15)米,
    故答案为(15+15).
    【点睛】本题考查了解直角三角形的应用,正确构建直角三角形是解题的关键.
    14. 如图,矩形中,,,以为直径的半圆与相切于点,连接,则阴影部分的面积为__.(结果保留
    【答案】π.
    【解析】
    【分析】如图所示,连接OE交BD于点F,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,再证△EFB≌△OFD,即可将阴影部分面积转化为扇形OED的面积,最后利用扇形面积公式求解即可得出答案.
    【详解】如图所示,连接OE交BD于点F,

    ∵以AD为直径的半圆O与BC相切于点E,
    ∴OD=2,OE⊥BC,
    ∴OE=OD=2,
    在矩形中,

    ∴四边形OECD为正方形,
    ∴CE=OD=2,
    ∴BE=BC-CE=2,
    ∴BE=DO,
    ∵AD//BC,

    ∴△EFB≌△OFD,
    ∴阴影部分的面积= .
    故答案为π.
    【点睛】本题考查了切线的性质、矩形的性质、正方形的判定和性质、全等三角形的判定和性质、扇形的面积公式等知识.正确添加辅助线、仔细识图从中得到阴影部分面积的求法是解题的关键.
    15. 如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含、代数式表示).
    【答案】a+8b
    【解析】
    【分析】观察可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),由此可得用9个拼接时的总长度为9a-8(a-b),由此即可得.
    【详解】观察图形可知两个拼接时,总长度为2a-(a-b),
    三个拼接时,总长度为3a-2(a-b),
    四个拼接时,总长度为4a-3(a-b),
    …,
    所以9个拼接时,总长度为9a-8(a-b)=a+8b,
    故答案为a+8b.
    【点睛】本题考查了规律题——图形的变化类,通过推导得出总长度与个数间的规律是解题的关键.
    三、解答题
    16.
    【答案】
    【解析】
    【分析】根据零指数幂、二次根式、锐角三角函数值、负指数幂的运算法则进行计算后,再进行加减运算即可.
    【详解】解:原式.
    【点睛】此题考查了实数的混合运算,准确求解零指数幂、二次根式、锐角三角函数值、负指数幂是解题的关键.
    17. 先化简,再求值:其中
    【答案】,
    【解析】
    【分析】利用分式的相应的运算法则进行化简,再代入相应的值运算即可.
    【详解】解:原式
    =
    将代入得原式.
    【点睛】本题主要考查分式的化简求值,解答的关键是对相应的运算法则的掌握.
    18. 某学校准备组织部分学生到少年宫参加活动,刘老师从少年宫带回来两条信息:
    信息一:按原来报名参加的人数,共需要交费用340元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;
    信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少5元.根据以上信息,原来报名参加的学生有多少人?在没有享受优惠的情况下每人需交费多少元?
    【答案】原来报名参加的学生有20人,在没有享受优惠的情况下每人需交费17元.
    【解析】
    【分析】设原来报名参加的学生有x人,根据人数是原来的2倍,共交费480元且每位同学平均分摊的费用比原来少5元列出分式方程,然后求解即可.
    【详解】解:设原来报名参加的学生有x人,
    依题意得:,
    解得,
    经检验,是原方程的解,且符合题意,
    所以在没有享受优惠情况下每人需交费:元,
    答:原来报名参加的学生有20人,在没有享受优惠的情况下每人需交费17元.
    【点睛】本题考查了分式方程的应用,找出合适的等量关系列出方程是解题的关键.
    19. 为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为、、、四个等级,绘制如下不完整的统计图表,如题图表所示,根据图表信息解答下列问题:
    成绩等级频数分布表
    成绩等级扇形统计图
    (1)x=______,y=______,扇形图中表示的圆心角的度数为______度;
    (2)甲、乙、丙是等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.
    【答案】(1)4,40,36;(2).
    【解析】
    【分析】(1)根据B等级的人数以及所占的比例可求得y,用y减去其余3组的人数可求得x,用360乘以C等级所占的比例即可求得相应圆心角的度数;
    (2)画出树状图得到所有等可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.
    【详解】(1)y=10÷25%=40,
    x=40-24-10-2=4,
    360×=36度,
    故答案为4,40,36
    (2)画树状图如图:
    共有6种等可能的情况,其中同时抽到甲、乙的有两种情况,
    ∴P(同时抽到甲、乙)=.
    【点睛】本题考查了频数分布表,扇形统计图,列表法或树状图法求概率,弄懂图表,从中得到有用的信息是解题的关键.本题还用到了知识点:概率=所求情况数与总情况数之比.
    20. 如图1,在中,,是的外接圆,过点作交于点,连接交于点,延长至点,使,连接.
    (1)求证:;
    (2)求证:是的切线;
    (3)如图2,若点是内心,,求的长.
    【答案】(1)证明见解析;(2)证明见解析;(3)BG=5.
    【解析】
    【分析】(1)根据等腰三角形的性质可得,再根据圆周角定理以及可得,即可得ED=EC;
    (2)连接,可得,继而根据以及三角形外角的性质可以推导得出,可得,从而可得,问题得证;
    (3)证明,可得,从而求得,连接,结合三角形内心可推导得出,继而根据等腰三角形的判定可得.
    【详解】(1)∵,∴,
    又∵,,
    ∴,
    ∴;
    (2)连接,
    ∵,∴,
    ∴,
    ∵,∴,
    ∴,
    ∵,∴,
    ∴,∴,
    ∴,
    ∴为的切线;
    (3)∵,,
    ∴,∴,
    ∴,
    ∵,∴,
    连接,∴,

    ∵点为内心,∴,
    又∵,
    ∴,
    ∴,
    ∴.
    【点睛】本题考查了等腰三角形的判定与性质,切线的判定,相似三角形的判定与性质,三角形的内心等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    21. 如图所示抛物线过点,点,且
    (1)求抛物线的解析式及其对称轴;
    (2)点在直线上的两个动点,且,点在点的上方,求四边形的周长的最小值;
    (3)点为抛物线上一点,连接,直线把四边形的面积分为3∶5两部分,求点的坐标.
    【答案】(1),对称轴为直线;(2)四边形的周长最小值为;(3)
    【解析】
    【分析】(1)OB=OC,则点B(3,0),则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3)=ax2-2ax-3a,即可求解;
    (2)CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解;
    (3)S△PCB:S△PCA=EB×(yC-yP):AE×(yC-yP)=BE:AE,即可求解.
    【详解】(1)∵OB=OC,∴点B(3,0),
    则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3)=ax2-2ax-3a,
    故-3a=3,解得:a=-1,
    故抛物线的表达式为:y=-x2+2x+3…①;
    对称轴为:直线
    (2)ACDE的周长=AC+DE+CD+AE,其中AC=、DE=1是常数,
    故CD+AE最小时,周长最小,
    取点C关于函数对称点C(2,3),则CD=C′D,
    取点A′(-1,1),则A′D=AE,
    故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,
    四边形ACDE的周长的最小值=AC+DE+CD+AE=+1+A′D+DC′=+1+A′C′=+1+;
    (3)如图,设直线CP交x轴于点E,
    直线CP把四边形CBPA的面积分为3:5两部分,
    又∵S△PCB:S△PCA=EB×(yC-yP):AE×(yC-yP)=BE:AE,
    则BE:AE,=3:5或5:3,
    则AE=或,
    即:点E的坐标为(,0)或(,0),
    将点E、C的坐标代入一次函数表达式:y=kx+3,
    解得:k=-6或-2,
    故直线CP的表达式为:y=-2x+3或y=-6x+3…②
    联立①②并解得:x=4或8(不合题意值已舍去),
    故点P的坐标为(4,-5)或(8,-45).
    【点睛】本题考查是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A′点来求最小值,是本题的难点.
    22. 阅读下面的材料:
    如果函数 y=f(x)满足:对于自变量 x 的取值范围内的任意 x1,x2,
    (1)若 x1<x2,都有 f(x1)<f(x2),则称 f(x)是增函数;
    (2)若 x1<x2,都有 f(x1)>f(x2),则称 f(x)是减函数.
    例题:证明函数f(x)= (x>0)是减函数.
    证明:设 0<x1<x2,
    f(x1)﹣f(x2)=.
    ∵0<x1<x2,
    ∴x2﹣x1>0,x1x2>0.
    ∴>0.即 f(x1)﹣f(x2)>0.
    ∴f(x1)>f(x2).
    ∴函数 f(x)= (x>0)是减函数.
    根据以上材料,解答下面的问题:
    已知函数.
    f(﹣1)= +(﹣2)=-1,f(﹣2)= +(﹣4)=.
    (1)计算:f(﹣3)= ,f(﹣4)= ;
    (2)猜想:函数是 函数(填“增”或“减”);
    (3)请仿照例题证明你的猜想.
    【答案】(1), (2)增 (3)证明见解析
    【解析】
    【分析】(1)将和代入求解即可;
    (2)根据,,我们猜想函数是增函数;
    (3)设,按照例题思路可得,即,得证函数是增函数.
    【详解】(1)∵


    (2)∵,
    ∴函数是增函数;
    (3)设





    ∴函数是增函数.
    【点睛】本题考查了函数解析式问题,掌握函数解析式的性质、函数的增减性是解题的关键.成绩等级
    频数
    A
    24
    B
    10
    C
    x
    D
    2
    合计
    y
    相关试卷

    精品解析:2023年广东省深圳市罗湖区中考模拟数学试题(5月): 这是一份精品解析:2023年广东省深圳市罗湖区中考模拟数学试题(5月),文件包含精品解析2023年广东省深圳市罗湖区中考模拟数学试题5月原卷版docx、精品解析2023年广东省深圳市罗湖区中考模拟数学试题5月解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    2023年广东省深圳市罗湖区未来学校九年级中考数学模拟试题: 这是一份2023年广东省深圳市罗湖区未来学校九年级中考数学模拟试题,共8页。

    2023年广东省深圳市罗湖区中考模拟数学试题(5月)(含解析): 这是一份2023年广东省深圳市罗湖区中考模拟数学试题(5月)(含解析),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map