终身会员
搜索
    上传资料 赚现金
    2023-2024学年湖南省株洲市第八中学高一上学期期中数学试题含答案
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 解析
      湖南省株洲市第八中学2023-2024学年高一上学期11月期中数学试题 Word版含解析.docx
    • 原卷
      湖南省株洲市第八中学2023-2024学年高一上学期11月期中数学试题 Word版无答案.docx
    2023-2024学年湖南省株洲市第八中学高一上学期期中数学试题含答案01
    2023-2024学年湖南省株洲市第八中学高一上学期期中数学试题含答案02
    2023-2024学年湖南省株洲市第八中学高一上学期期中数学试题含答案03
    2023-2024学年湖南省株洲市第八中学高一上学期期中数学试题含答案01
    2023-2024学年湖南省株洲市第八中学高一上学期期中数学试题含答案02
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年湖南省株洲市第八中学高一上学期期中数学试题含答案

    展开
    这是一份2023-2024学年湖南省株洲市第八中学高一上学期期中数学试题含答案,文件包含湖南省株洲市第八中学2023-2024学年高一上学期11月期中数学试题Word版含解析docx、湖南省株洲市第八中学2023-2024学年高一上学期11月期中数学试题Word版无答案docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    命题人:符晨松 审核人:高一数学备课组
    一、单选题(本大题共8小题,共40分.在每小题列出的选项中,选出符合题目的一项)
    1 已知集合,则( )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】解一元一次不等式可得,即可求得.
    【详解】解不等式可得,即,
    又,所以.
    故选:D
    2. 已知函数为R上的奇函数,当时,,则等于( )
    A. -3B. -1C. 1D. 3
    【答案】C
    【解析】
    【分析】根据函数奇函数可得,再根据已知区间函数解析式即可得解.
    【详解】解:因为函数为R上的奇函数,当时,,
    所以.
    故选:C.
    3. 函数f(x)=x2+3x+2在区间(-5,5)上的最大值、最小值分别为( )
    A. 42,12B. 42,-
    C. 12,-D. 无最大值,-
    【答案】D
    【解析】
    【详解】因为对称轴为x= ,所以x=时取最小值-,由于为开区间,端点值取不到,无最大值,选D.
    4. 如图的曲线是幂函数在第一象限内的图象.已知分别取四个值,与曲线相应的依次为( )

    A. B.
    C. D.
    【答案】A
    【解析】
    【分析】作直线分别与曲线相交,结合函数的单调性即可判断.
    【详解】因为函数为增函数,所以,
    所以作直线分别与曲线相交,交点由上到下分别对应的n值为,
    由图可知,曲线相应n值为.
    故选:A

    5. 下列函数中与函数是同一个函数的是( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】根据同一函数的概念,结合函数的定义域与对应法则,逐项判定,即可求解.
    【详解】对于A中,函数的定义为,因为函数的定义域为,
    所以两函数的定义域不同,不是同一函数;
    对于B中,函数与函数的定义域和对应法则都相同,所以是同一函数;
    对于C中,函数与函数的对应法则不同,不是同一函数;
    对于D中,函数的定义域为,因为函数的定义域为,
    所以两函数的定义域不同,不是同一函数.
    故选:B.
    6. “关于的不等式对恒成立”的一个充分不必要条件是( )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】根据不等式的解集为,可得出,可求出的取值范围,结合集合的包含关系判断可得出结论.
    【详解】若关于的不等式的解集为,则,解得,
    因为,,
    ,
    因此,“关于的不等式对恒成立”的一个充分不必要条件是“”.
    故选:D.
    7. 已知定义在上的偶函数满足:①对任意的,且,都有成立;②.则不等式的解集为( )
    A. B.
    C. D.
    【答案】A
    【解析】
    【分析】根据条件①可知函数在上单调递减,再根据偶函数性质即可得出函数的单调性,结合条件②并对进行分类讨论即可解出不等式.
    【详解】由对任意的,且,都有成立可得,
    函数在上单调递减,
    又是定义在上的偶函数,根据偶函数性质可知,
    在上单调递增,且;
    由不等式可知,
    当时,,根据在上单调递减可得;
    当时,,根据在上单调递增可得;
    综上可知,不等式的解集为.
    故选:A
    8. 在上定义运算,时,不等式有解,则实数的取值范围是( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】
    转化条件得在上有解,利用基本不等式求得在的最大值即可得解.
    【详解】由题意可得在上有解,
    所以即在上有解,
    又,当且仅当时,等号成立,
    所以在的最大值为,
    所以实数的取值范围是.
    故选:A.
    【点睛】本题考查了基本不等式的应用及有解问题的解决,考查了运算求解能力与转化化归思想,属于中档题.
    二、多选题(本大题共4小题,共20分,在每小题有多项符合题目要求,少选一个得2分,多选或错选得0分)
    9. 已知,则下列结论正确的是( )
    A. 若,,则B. 若,则
    C. 若,则D. 若,则
    【答案】CD
    【解析】
    【分析】利用特殊值代入法排除AB,利用不等式的基本性质可判断CD,得出结论.
    【详解】对于A,不妨令,,,,尽管满足,,但显然不满足,故错误;
    对于B,不妨令,,显然满足,但不满足,故错误;
    对于C,由不等式的性质知,若,则,故正确;
    对于D,若,则,,故正确.
    故选:CD.
    10. 甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测:
    甲预测说:我不会获奖,丙获奖; 乙预测说:甲和丁中有一人获奖;
    丙预测说:甲的猜测是对的; 丁预测说:获奖者在甲、乙、丙三人中.
    成绩公布后表明,四人的预测中有两人的预测与结果相符,另外两人的预测与结果不符已知有两人获奖,则获奖者可能是( ).
    A. 甲和乙B. 乙和丙C. 甲和丙D. 乙和丁
    【答案】C
    【解析】
    【分析】从四人的描述语句可以看出,甲和丙的说法要么同时与结果相符,要么同时与结果不符,再对乙、丁的说法进行判断.
    【详解】∵“甲预测说:我不会获奖,丙获奖”,而“丙预测说:甲的猜测是对的”
    ∴甲和丙的说法要么同时与结果相符,要么同时与结果不符.
    若甲和丙的说法要么同时与结果相符,则丁的说法也对,这与“,四人的预测中有两人的预测与结果相符,另外两人的预测与结果不符已知有两人获奖,”相矛盾,故错误;
    若甲和丙的说法与结果不符,则乙、丁的预测成立
    所以甲获奖,丁不获奖;丙获奖,乙不获奖.
    故选:C
    【点睛】真假语句的判断需要结合实际情况,作出合理假设,进行有效论证.
    11. 函数的图象可能是
    A. B.
    C. D.
    【答案】ABD
    【解析】
    【分析】根据题意,分、以及三种情况讨论函数的图象,分析选项即可得答案.
    【详解】解:根据题意,
    当时,,,其图象与选项对应,
    当时,,在区间上,,其图象在第一象限先减后增,在区间上,为减函数,其图象与选项对应,
    当时,,在区间上,为增函数,在区间上,,其图象在第二象限先减后增,其图象与选项对应,
    故选:.
    12. 定义在上的函数满足,当时,,则满足( )
    A. B. 是偶函数
    C. 在上有最大值D. 的解集为
    【答案】CD
    【解析】
    【分析】赋值法可以求出,,判断出B选项;利用赋值法和题干中的条件可以得出的单调性,从而判断AC;利用函数的单调性进行解不等式,判断D.
    【详解】∵定义在R上的函数满足,
    令得:,解得:,
    令得:,因为,所以,
    故是奇函数,B错误;
    任取,,且,则令,,代入得:,
    因为当时,,而,所以,
    故,即,从而在R上单调递减,
    所以,A错误;
    所以函数在上有最大值为,C正确;
    由, 在R上单调递减,故,解得,故的解集为,D正确.
    故选:CD.
    三、填空题(本大题共4小题,共20分)
    13. 已知幂函数的图象过点,则函数__________;
    【答案】
    【解析】
    【分析】设出幂函数的解析式,把点代入求的值.
    【详解】设幂函数,因为函数过点,所以,解得:,
    所以.
    14. 已知,则的最小值为_________.
    【答案】4
    【解析】
    【分析】利用拼凑法结合均值不等式即可求解.
    【详解】,
    当且仅当即即时等号成立,
    所以的最小值为4,
    故答案为:4.
    15. 已知函数是上是减函数,则a的取值范围___________
    【答案】
    【解析】
    【分析】根据函数是上的减函数,则每一段都是减函数且左侧的函数值不小于右侧的函数值.
    【详解】函数是上减函数,
    所以,
    解得.
    故答案为:.
    【点睛】易错点睛:分段函数在上是单调函数,除了保证在各段内单调性一致,还要注意在接口处单调.
    16. 对于任意实数,表示不小于的最小整数,如,定义在上的函数,若集合,则集合中所有元素的和为_______
    【答案】-4
    【解析】
    【分析】讨论,,三种情况,分别计算得到得到答案.
    【详解】当时:
    当时:,,
    当时:,,
    故,集合中所有元素的和为
    故答案为
    【点睛】本题考查了集合的元素和,分类讨论是一个常用的技巧,可以简化题目,易于计算.
    四、解答题(本大题共6小题,共72分.解答应写出文字说明,证明过程或演算步骤)
    17. 已知集合,.
    (1)当时,求,;
    (2)若“”是“”成立的充分不必要条件,求实数的取值范围.
    【答案】(1),
    (2)
    【解析】
    【分析】(1)当时,求出,再根据集合的并集,交集的运算求解即可.
    (2)根据题意可得,再求得,列出方程组求出的取值范围即可得答案.
    【小问1详解】
    解:当时,,,
    ,.
    【小问2详解】
    解:是成立的充分不必要条件,
    ,
    ,,,
    则,,
    经检验知,当时,,不合题意,
    实数的取值范围.
    18. 已知函数是定义在上的奇函数,且当时,.
    (1)求出函数在上的解析式,并补出函数在轴右侧的图像;
    (2)①根据图像写出函数的单调递减区间;
    ②若时函数的值域是,求的取值范围.
    【答案】(1),图象答案见解析;(2)①减区间为:和;②.
    【解析】
    【分析】(1)由奇函数的定义求得解析式,根据对称性作出图象.
    (2)由图象的上升与下降得增减区间,解出方程的正数解,可得结论.
    【详解】(1)当,,则
    因为为奇函数,则,
    即时,
    所以,
    图象如下:
    (2)如图可知,减区间为:和


    ∵∴
    故由图可知.
    【点睛】本题考查函数的奇偶性,考查图象的应用,由图象得单调区间,得函数值域.是我们学好数学的基本技能.
    19. 已知函数.
    (1)求函数的定义域;
    (2)求函数的值域.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)由根号下的式子为非负,解不等式即可得函数的定义域;
    (2)利用换元法和二次函数单调性即可求得函数的值域.
    【小问1详解】
    由题意可得,解得,
    所以函数的定义域为
    【小问2详解】
    易知;
    令,可得,
    所以,
    由二次函数性质可知函数在上单调递增,在上单调递减;
    所以,
    可得函数的值域为.
    20. 已知定义在区间上两个函数和,,,,.
    (1)求函数的最大值:
    (2)若对于任意,总存在,使恒成立,求实数a的取值范围.
    【答案】(1);
    (2)
    【解析】
    【分析】(1)由二次函数图像性质,由对称轴与区间的关系,分别讨论、即可;
    (2)原命题恒成立等价于,为对勾函数,可得,由(1)的结论分类讨论即可
    【小问1详解】
    ,开口向下,对称轴为,
    当,最大值;
    当,最大值

    【小问2详解】
    由题意,原命题恒成立等价于,
    为对勾函数,在单调递减,故;
    由(1)得,当,,符合
    当,,由得,,∴.
    综上,实数a的取值范围为
    21. 随着经济的发展,人们越来越注重生活的品质,对产品提出了更高的要求.产品质量作为一个重要的因素,与价格共同对产品的销售量产生影响.某企业加大科研投入,提高产品质量,增加利润.去年其旗下一产品的年销售量为1万只,每只销售价为6元,成本为5元,今年计划投入科研,进行产品升级,预计年销售量P(万只)与投入科研经费x(万元)之间的函数关系为,且当投入科研经费为20万元时,销售量为1.5万只,现每只产品的销售价为“原销售价”与“年平均每只产品所占科研经费的倍”之和.
    (1)当投入科研经费为15万元时,要使得该产品年利润W不少于20万元,则的最小值是多少?
    (2)若,则当投入多少万元科研经费时,该产品可获最大年利润?最大年利润是多少?(,精确到0.1万元)
    【答案】(1)
    (2)当投入约9.2(万元)科研经费时,该产品可获最大年利润,最大年利润约为0.8万元.
    【解析】
    【分析】(1)根据已知条件,先求得,代入,可得销售量,根据年利润=销售价销售量产品成本投入科研经费,
    可构造不等式求得;
    (2)根据已知条件结合基本不等式的公式即可求解.
    【小问1详解】
    当投入科研经费为20万元时,销售量为1.5万只,
    ,解得,
    ∴,则当时,;
    ∴现每只产品的销售价为,∴,
    解得:,即的最小值为.
    【小问2详解】
    由(1)知:∴;
    当时,现每只产品的销售价为,

    (当且仅当,即时取等号),
    所以当投入约9.2(万元)科研经费时,该产品可获最大年利润,最大年利润约为0.8万元.
    22. 给定函数.且用表示,较大者,记为.
    (1)若,试写出的解析式,并求的最小值;
    (2)若函数的最小值为,试求实数的值.
    【答案】(1),;(2)或.
    【解析】
    【分析】由的定义可得,(1)将代入,写出解析式,结合分段区间,求,的最小值并比较大小,即可得的最小值;(2)结合的解析式及对称轴,讨论、、分别求得对应最小值关于的表达式,结合已知求值.
    【详解】由题意,
    当时,,
    当时,,

    (1)当时,,

    ∴当时,,此时,
    当时,,此时,
    .
    (2),且对称轴分别为,
    ①当时,即时,在单调递减,单调递增;

    ,即,(舍去),
    ②当,即时,在单调递减,单调递增;

    ,有,故此时无解.
    ③当,即时,在单调递减,单调递增;

    ,即,(舍去)
    综上,得:或.
    相关试卷

    2023-2024学年湖南省株洲市第二中学高一上学期阶段性测试数学试题含答案: 这是一份2023-2024学年湖南省株洲市第二中学高一上学期阶段性测试数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    湖南省株洲市南方中学2023-2024学年高一上学期期中数学试题(Word版附答案): 这是一份湖南省株洲市南方中学2023-2024学年高一上学期期中数学试题(Word版附答案),共8页。试卷主要包含了下列表示正确的是,命题,已知,则“”是“”的,函数的零点所在区间为,已知正数满足,则的最小值为,已知,则的大小关系为,已知函数,则下列结论正确的是等内容,欢迎下载使用。

    2023-2024学年湖南省株洲市九方中学高一上学期9月月考数学试题B卷含答案: 这是一份2023-2024学年湖南省株洲市九方中学高一上学期9月月考数学试题B卷含答案,共13页。试卷主要包含了单选题,多选题,填空题,解答题,证明题,应用题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023-2024学年湖南省株洲市第八中学高一上学期期中数学试题含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map