数学八年级上册3 应用二元一次方程组——鸡免同笼综合训练题
展开一、单选题
1.我国古代数学著作《算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子来量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长尺,竿长尺,则符合题意的方程组是( )
A.B.C.D.
2.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )
A.若他买55本笔记本,则会缺少120元B.若他买55支笔,则会缺少120元
C.若他买55本笔记本,则会多出120元D.若他买55支笔,则会多出120元
3.我国古代数学名著《直指算法统宗》中有问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有个和尚分个馒头,如果大和尚每人分个,小和尚人分一个,正好分完.则小和尚人数为( )
A.B.C.D.
4.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,通过计算,鸡和兔的数量分别为( )
A.23和12B.12和23C.24和12D.12和24
5.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤;雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则正确的是( )
A.依题意B.依题意
C.一只雀的重量为斤D.一只燕的重量为斤
6.大课间,12人跳绳队为尊重每个队员的意愿,准备把队员分成跳大绳组或跳小绳组,大绳组3人一组,小绳组2人一组,在全队同学能同时参加活动且符合小组规定人数的前提下,则不同的分组方法有( )
A.1种B.2种C.3种D.4种
7.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为( )
A.B.
C.D.
8.(我国古代问题)有大小两种盛酒的桶,已知5大桶加上1小桶可以盛酒3斛(斛,音hú,是古代的一种容量单位),已知1大桶加上5小桶可以盛酒2斛,1大桶加上1小桶可以各盛酒多少斛?如果设1大桶x斛、1小桶长y斛,则列出正确的方程组是( )
A.B.C.D.
9.《孙子算经》中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”若设人数为,车数为,所列方程组正确的是( )
A.B.C.D.
10.用白铁皮做罐头盒,每张铁皮可制盒身个,或制盒底个,一个盒身与两个盒底配成一套罐头盒,现有张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?设用张制盒身,张制盒底.根据题意可列出的方程组是( )
A.B.
C.D.
二、填空题
11.中国古代的数学专著《九章算术》有方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为两,两,可得方程组是 .
12.我国古代《孙子算经》中有记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”则乘车人数为 人.
13.现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?若设用x张铁皮制盒身,y张铁皮制盒底,列方程组为
14.把一张面值50元的人民币换成10元、5元的人民币,共有 种方法
15.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.
图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为 .
16.已知甲库存粮x吨,乙库存粮y吨.若从甲库调出10吨给乙库,乙库的存粮数是甲库存粮数的2倍,则以上用等式表示为 .
17.我国古代数学著作《张丘建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问:鸡翁、母、雏各几何.”意思为:一只公鸡值5钱,一只母鸡值3钱,三只小鸡值1钱,现有100钱,要买100只鸡,问:公鸡、母鸡、小鸡各多少只.若已知小鸡81只,设公鸡、母鸡的只数分别为x、y,请列出关于x、y的二元一次方程组: .
18.古典数学文献《增删算法统宗·六均输》中有这样一道题:甲、乙两人一同放牧,两人暗地里在数羊的数量.如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同.则乙的羊数量为 只.
19.明代数学家程大位的《算法统宗》中有这样一个问题,其大意为:有一群人分若干两银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:如果每人分半斤,则出现的结果是: (斤两).
20.有甲、乙两数,甲数的3倍与乙数的2倍之和等于47,甲数的5倍比乙数的6倍小1,这两个数分别为 .
三、解答题
21.某公司安排大、小货车共20辆,分别从A、B两地运送320吨物资到某市,每辆大货车装25吨物资,每辆小货车装10吨物资;这20辆货车恰好装完这批物资.
(1)这20辆货车中,大货车、小货车各有多少辆?
(2)已知这两种货车的运费如表:
要安排上述装好物资的20辆货车中的12辆从A地出发,其余从B地出发.设从A地出发的大货车有n辆(大货车不少于5辆),这20辆货车的总运费为w元,求总运费w的最小值.
22.某班组织观看电影,有甲、乙两种电影票,甲种票每张元,乙种票每张元.如果全班名同学购票用去元,那么甲、乙两种电影票各多少张?
23.一种蜂王精有大小盒两种包装,小王作了如下统计,1大盒1小盒共有9小瓶,1大盒2小盒共有11小瓶,2大盒3小盒共有19小瓶.小张通过计算后认为统计有误,你认同小张的看法吗?请用二元一次方程组的相关知识解决问题.
24.今有鸡兔同笼,上有二十八头,下有七十八足.问鸡兔各几何?试用列方程(组)解应用题的方法求出问题的解.
25.在某校“第二十届校园文化艺术节”活动中,七年级组织各班级进行足球比赛,最为常用的足球比赛的积分规则为:胜一场得3分,平一场得1分,输一场得0分.如果七(1)班足球队共需比赛15场,现已比赛了8场(其中平了3场),共得15分,请问:
(1)前8场比赛中,七(1)班足球队共胜了多少场?
(2)七(1)班足球队打满15场比赛,最高得分得多少分?
(3)通过对比赛情况分析,这支球队打满15场比赛后,得分不低于28分,就可以进入下一轮比赛,请你分析一下,在后面的7场比赛中,这支球队至少要胜几场,才能进入下一轮比赛?
出发地
车型
A地(元/辆)
B地(元/辆)
大货车
600
700
小货车
300
500
参考答案:
1.A
2.D
3.D
4.A
5.A
6.C
7.C
8.D
9.C
10.D
11.
12.39
13.
14.6
15.
16.
17.
18.45
19.还差二两
20.10,
21.(1)大货车有8辆,小货车有12辆;
(2)9700元.
22.甲种票买20张,乙种票买15张
23.认同
24.鸡有17只,兔有11只.
25.(1)前8场比赛中,七(1)班足球队共胜了4场;(2)最高得分得36分;(3)在以后的比赛中这个球队至少要胜3场.
数学北师大版3 应用二元一次方程组——鸡免同笼习题: 这是一份数学北师大版3 应用二元一次方程组——鸡免同笼习题,共8页。试卷主要包含了4y-x2=1 B等内容,欢迎下载使用。
数学八年级上册第五章 二元一次方程组3 应用二元一次方程组——鸡免同笼课后复习题: 这是一份数学八年级上册第五章 二元一次方程组3 应用二元一次方程组——鸡免同笼课后复习题,共3页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
北师大版八年级上册3 应用二元一次方程组——鸡免同笼当堂达标检测题: 这是一份北师大版八年级上册3 应用二元一次方程组——鸡免同笼当堂达标检测题,共5页。试卷主要包含了《九章算术》中有这样的问题,一道来自课本的习题等内容,欢迎下载使用。