所属成套资源:2024年中考数学核心几何模型重点突破(全国通用)
专题12 全等三角形中的手拉手模型 2024年中考数学核心几何模型重点突破(全国通用)
展开
这是一份专题12 全等三角形中的手拉手模型 2024年中考数学核心几何模型重点突破(全国通用),文件包含专题12全等三角形中的手拉手模型答案详解docx、专题12全等三角形中的手拉手模型docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
【模型1】等腰三角形中的手拉手全等模型
如图,△ABC与△ADE均为等腰三角形,且∠BAC=∠DAE,连接BD、CE,则△ABD≌△ACE。
【证明】
∠BAC=∠DAE
又△ABC与△ADE均为等腰三角形
在和中
△ABD≌△ACE
【模型2】等边三角形中的手拉手全等模型
如图,△ABC与△CDE均为等边三角形,点B、C、E三点共线,连接AE、BD,则△BCD≌△ACE。
【模型3】一般三角形中的手拉手全等模型
如图,在任意△ABC中,以AB为边作等边△ADB,以AC为边作等边△ACE,连接DC、BE,则△ADC≌△ACE.
【模型4】正方形中的手拉手全等模型
如图,在任意△ABC中,以AB为边作正方形ABDE,以AC为边作正方形ACFG,连接EC、BG,则△AEC≌△ABG.
【例1】如图,C为线段AE上一动点(不与点,重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下结论错误的是( )
A.∠AOB=60°B.AP=BQ
C.PQ∥AED.DE=DP
【例2】如图,是边长为5的等边三角形,,.E、F分别在AB、AC上,且,则三角形AEF的周长为______.
【例3】如图1,B、C、D三点在一条直线上,AD与BE交于点O,△ABC和△ECD是等边三角形.
(1)求证:△ACD≌△BCE;
(2)求∠BOD的度数;
(3)如图2,若B、C、D三点不在一条直线上,∠BOD的度数是否发生改变? (填“改变”或“不改变”)
一、单选题
1.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中,正确的结论有( )
①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四边形BCDE=BD•CE;⑤BC2+DE2=BE2+CD2.
A.1个B.2个C.3个D.4个
2.如图,正和正中,B、C、D共线,且,连接和相交于点F,以下结论中正确的有( )个
① ②连接,则平分 ③ ④
A.4B.3C.2D.1
3.如图,在直线AC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD交于点H,AE与DB交于点G,BE与CD交于点F,下列结论:①AE=CD;②∠AHD=60°;③△AGB≌△DFB;④BH平分∠GBF;⑤GF∥AC;⑥点H是线段DC的中点.正确的有( )
A.6个B.5个C.4个D.3个
4.如图,点C是线段AE上一动点(不与A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,有以下5个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中一定成立的结论有( )个
A.1B.2C.3D.4
5.如图,在中,,点D、F是射线BC上两点,且,若,;则下列结论中正确的有( )
①;②;③;④
A.1个B.2个C.3个D.4个
6.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM,下列结论:
①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.
其中正确的个数为( )
A.4B.3C.2D.1
二、填空题
7.如图,在正方形ABCD中,E是对角线BD上一点,将线段CE绕点C按顺时针方向旋转得到线段,连接,,.下列结论:①若,则;②;③若,则;④若,,则.其中正确的结论有___________(填正确的序号)
8.如图,是正内一点,,将线段以点为旋转中心逆时针旋转得到线段,下列结论:①点与的距离为4;②;③;④其中正确的结论是____________.(只填序号)
9.在中,,,,点D是直线BC上一动点,连接AD,在直线AD的右恻作等边,连接CE,当线段CE的长度最小时,则线段CD的长度为__________.
10.如图,在中,,,于点,于点.,连接,将沿直线翻折至所在的平面,得,连接.过点作交于点,则四边形的周长为________.
11.如图和是外两个等腰直角三角形,,下列说法正确的是:________.
①,且;
②;
③平分;
④取的中点,连,则.
12.(1)如图(1),在四边形中,,,E,F分别是上的动点,且,求证:.
(2)如图(2),在(1)的条件下,当点E,F分别运动到的延长线上时,之间的数量关系是______.
三、解答题
13.如图,若和都是等边三角形,求的度数.
14.如图,和都是等腰直角三角形,的顶点A在的斜边上,连接.
(1)求证:.
(2)若,求的长.
15.如图,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,连接BE.
(1)求证:AD=BE;
(2)若∠CAE=15°,AD=4,求AB的长.
16.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.
(1)求证:AE=CD;
(2)若∠DBC=45°,求∠BFE的度数.
17.和如图所示,其中.
(1)如图①,连接,求证:;
(2)如图②,连接,若,,,,求的长.
18.问题:如图1,在等边三角形ABC内,点P到顶点A、B、C的距离分别是3,4,5,求∠APB的度数?
探究:由于PA、PB、PC不在同一个三角形中,为了解决本题,我们可以将△ABP绕点A逆时针旋转60°到△ACP′处,连结P P′,这样就将三条线段转化到一个三角形中,从而利用全等的知识,求出∠APB的度数.请你写出解答过程:
应用:请你利用上面的方法解答:如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°,求证:
19.【探究发现】(1)如图1,在四边形中,对角线,垂足是O,求证:.
【拓展迁移】(2)如图2.以三角形的边、为边向外作正方形和正方形,求证:.
(3)如图3,在(2)小题条件不变的情况下,连接,若,,,则的长_____________.(直接填写答案)
20.△ACB和△DCE是共顶点C的两个大小不一样的等边三角形.
(1)问题发现:
如图1,若点A,D,E在同一直线上,连接AE,BE.
①求证:△ACD≌△BCE;
②求∠AEB的度数.
(2)类比探究:如图2,点B、D、E在同一直线上,连接AE,AD,BE,CM为△DCE中DE边上的高,请求∠ADB的度数及线段DB,AD,DM之间的数量关系,并说明理由.
(3)拓展延伸:如图3,若设AD(或其延长线)与BE的所夹锐角为α,则你认为α为多少度,并证明.
21.定义:我们把两条对角线互相垂直的四边形称为“垂美四边形”.
(1)特例感知:如图1,四边形ABCD是“垂美四边形”,如果,,,则______,______.
(2)猜想论证:如图1,如果四边形ABCD是“垂美四边形”,猜想它的两组对边AB,CD与BC,AD之间的数量关系并给予证明.
(3)拓展应用:如图2,分别以的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知,,求GE长.
22.在中,,,点D是射线CB上的动点(点D不与点B、C重合),连接AD,,且,连接DE,过点D作,且,连接CF.
(1)如图1,当点D是BC中点时,DE与CF的数量关系是 ,位置关系是 ;
(2)如图2,当点D是线段BC上任意一点时,(1)中的两个结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由;
(3)若,时,请直接写出线段DE的长.
23.如图1,,,MN是过点A的直线,过点D作于点B,连接CB;过点C作,与MN交于点E.
(1)连接AD,AD是AC的______倍;
(2)直线MN在图1所示位置时,可以得到线段BD和AE的数量关系是______,与BC之间的数量关系是______,请证明你的结论;
(3)直线MN绕点A旋转到图2的位置,若,,则AB的长为______(直接写结果);
(4)直线MN绕点A旋转到图3的位置时,直接写出线段BA,BC,BD之间的数量关系______.
24.两个顶角相等的等腰三角形,如果具有公共的顶角顶点,并将它们的底角顶点分别对应连接起来得到两个全等三角形,我们把这样的图形称为“手拉手”图形.如图1,在“手拉手”图形中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,则△ABD≌△ACE.
(1)请证明图1的结论成立;
(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,求∠BOC的度数;
(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.
相关试卷
这是一份专题33 将军饮马模型 2024年中考数学核心几何模型重点突破(全国通用),文件包含专题33将军饮马模型答案详解docx、专题33将军饮马模型docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
这是一份专题32 几何变换之旋转模型 2024年中考数学核心几何模型重点突破(全国通用),文件包含专题32几何变换之旋转模型答案详解docx、专题32几何变换之旋转模型docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
这是一份专题30 几何变换之平移模型 2024年中考数学核心几何模型重点突破(全国通用),文件包含专题30几何变换之平移模型答案详解docx、专题30几何变换之平移模型docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。