终身会员
搜索
    上传资料 赚现金

    专题24 勾股定理中的蚂蚁爬行模型 2024年中考数学核心几何模型重点突破(全国通用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      专题24 勾股定理中的蚂蚁爬行模型(答案详解).docx
    • 练习
      专题24 勾股定理中的蚂蚁爬行模型.docx
    专题24 勾股定理中的蚂蚁爬行模型(答案详解)第1页
    专题24 勾股定理中的蚂蚁爬行模型(答案详解)第2页
    专题24 勾股定理中的蚂蚁爬行模型(答案详解)第3页
    专题24 勾股定理中的蚂蚁爬行模型第1页
    专题24 勾股定理中的蚂蚁爬行模型第2页
    专题24 勾股定理中的蚂蚁爬行模型第3页
    还剩25页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题24 勾股定理中的蚂蚁爬行模型 2024年中考数学核心几何模型重点突破(全国通用)

    展开

    这是一份专题24 勾股定理中的蚂蚁爬行模型 2024年中考数学核心几何模型重点突破(全国通用),文件包含专题24勾股定理中的蚂蚁爬行模型答案详解docx、专题24勾股定理中的蚂蚁爬行模型docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。



    【模型】如图,已知在一个长、宽、高分别为a、b、c的长方体中,已知蚂蚁沿着长方体的表面爬行,求蚂蚁从点到点C的最短路径。
    【证明】
    将上图正方体展开如图24-1,可知点到点C的最短路径为图24-1中的线段的长度。根据勾股定理可得:
    【模型变式1】
    如图24-2,已知在一个长、宽、高分别为a、b、c的长方体中,已知蚂蚁沿着长方体的表面爬行,求蚂蚁从点到点C的最短路径。
    【证明】
    将图24-2中的正方体展开如图24-4,可知点到点C的最短路径为图24-1中的线段的长度。根据勾股定理可得:。
    【模型变式2】
    如图24-3,已知在一个长、宽、高分别为a、b、c的长方体中,已知蚂蚁沿着长方体的表面爬行,求蚂蚁从点到点C的最短路径。
    【证明】
    将图24-3中的正方体展开如图24-5,可知点到点C的最短路径为图24-1中的线段的长度。根据勾股定理可得:。
    【例1】如图,长方形的长为15,宽为10,高为20,点离点的距离为5,蚂蚁如果要沿着长方形的表面从点爬到点,需要爬行的最短距离是( )
    A.35B.C.25D.
    【例2】如图,在圆柱的截面ABCD中,AB=,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短距离为_____.
    【例3】如图,一个长方体形盒子的长、宽、高分别为4cm,4cm,6cm
    (1)一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点B,请你帮蚂蚁设计一条最短的路线,蚂蚁要爬行的最短路线是多少?
    (2)若将一根木棒放进盒子里并能盖上盖子,则能放入该盒子里的木棒的最大长度是多少cm ? (结果可保留根号)
    一、单选题
    1.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,则最短的爬行距离是( )
    A.10B.14C.D.
    2.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离是( )
    A.15cmB.16cmC.17cmD.18cm
    3.如图所示,圆柱的高AB=3,底面直径BC=6,现在有一只蚂蚁想要从A处沿圆柱侧面爬到对角C处捕食,则它爬行的最短距离是( )
    A.3B.6C.9D.6
    4.如图是一个三级台阶,它的每一级的长,宽,高分别是,A和B是这个台阶相对的端点,点A处有一只蚂蚁,想到B处去吃食物,则这只蚂蚁爬行的最短距离为( )
    A.B.C.D.
    5.图,长方体的长为8,宽为10,高为6,点B离点C的距离为2,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
    A.B.C.D.
    6.如图,在长方体透明容器(无盖)内的点处有一滴糖浆,容器外点处的蚂蚁想沿容器壁爬到容器内吃糖浆,已知容器长为,宽为,高为,点距底部,请问蚂蚁需爬行的最短距离是(容器壁厚度不计)
    A.B.C.D.
    二、填空题
    7.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是_____.
    8.如图,一只蚂蚁沿长方体的表面从顶点A爬到另一顶点M,已知AB=AD=2,BF=3.这只蚂蚁爬行的最短距离_____.
    9.如图,圆柱形容器外壁距离下底面3cm的A处有一只蚂蚁,它想吃到正对面外壁距离上底面3cm的B处的米粒,若圆柱的高为12cm,底面周长为24 cm.则蚂蚁爬行的最短距离为_______.
    10.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_______cm.
    11.如图一只蚂蚁从长为4cm,宽为3cm,高为2cm的长方体纸箱A点沿纸箱爬到B点,那么它爬行的最短路线的长是_________cm
    12.在底面周长为,高为的圆柱体侧面上,用一条无弹性的丝带从至按如图所示的圈数缠绕,则丝带的最短长度为_________.
    三、解答题
    13.如图,长方体的透明玻璃鱼缸,假设其长,高,水深为,在水面上紧贴内壁处有一鱼饵,在水面线上,且;一小虫想从鱼缸外的点沿壁爬进鱼缸内处吃鱼饵,求小动物爬行的最短距离.(鱼缸厚度忽略不计)
    14.(1)如图1,长方体的长、宽、高分别为,,,如果用一根细线从点开始经过4个侧面缠绕一圈到达点,那么所用细线最短需要______;
    (2)如图2,长方体的棱长分别为,,假设昆虫甲从盒内顶点开始以的速度在盒子的内部沿棱向下爬行,同时昆虫乙从盒内顶点以相同的速度在盒内壁的侧面上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?
    15.如图,长方体盒子(无盖)的长、宽、高分别是12cm,8cm,30cm.
    (1)在AB的中点C处有一滴蜜糖,一只小虫从D处爬到C处去吃,有无数种走法,则最短路程是多少?
    (2)若此长方体盒子有盖,则能放入木棒的最大长度是多少?
    16.如图①,长方体长AB为8 cm,宽BC为6 cm,高BF为4 cm.在该长体的表面上,蚂蚁怎样爬行路径最短?
    (1)蚂蚁从点A爬行到点G,且经过棱EF上一点,画出其最短路径的平面图,并标出它的长.
    (2)设该长方体上底面对角线EG、FH相交于点O(如图②),则OE=OF=OG=OH=5 cm.
    ①蚂蚁从点B爬行到点O的最短路径的长为 cm;
    ②当点P在BC边上,设BP长为a cm,求蚂蚁从点P爬行到点O的最短路的长(用含a的代数式表示).
    17.如图,已知圆柱底面的周长为12,圆柱的高为8,在圆柱的侧面上,过点A,C嵌有一圈长度最短的金属丝.
    (1)现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是______.
    (2)如图①,求该长度最短的金属丝的长.
    (3)如图②,若将金属丝从点B绕四圈到达点A,则所需金属丝最短长度是多少?
    18.在每个小正方形的边长为1的网格中,每个小正方形的顶点称为格点.我们将从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.
    (1)在图1中画出边长为的正方形,使它的顶点在网格的格点上.
    (2)在图2中有一只电子小马从格点出发,经过跳马变换到达与其相对的格点,则最少需要跳马变换的次数是 次.
    (3)如图3,在的正方形网格中,一只电子小马从格点经过若干次跳马变换到达与其相对的格点,则它跳过的最短路程为 .
    19.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,为了吃到蜂蜜,蚂蚁从外壁A处沿着最短路径到达内壁B处.
    (1)右图是杯子的侧面展开图,请在杯沿CD上确定一点P,使蚂蚁沿A-P-B路线爬行,距离最短.
    (2)结合右图,求出蚂蚁爬行的最短路径长.
    20.现有一个长、宽、高分别为5dm、4dm、3dm的无盖长方体木箱(如图,AB=5dm,BC=4dm,AE=3dm).
    (1) 求线段BG的长;
    (2) 现在箱外的点A处有一只蜘蛛,箱内的点C处有一只小虫正在午睡,保持不动.请你为蜘蛛设计一种捕虫方案,使得蜘蛛能以最短的路程捕捉到小虫.(木板的厚度忽略不计)

    相关试卷

    专题24 勾股定理中的蚂蚁爬行模型(教师版)-中考数学几何模型重点突破讲练:

    这是一份专题24 勾股定理中的蚂蚁爬行模型(教师版)-中考数学几何模型重点突破讲练,共30页。

    专题33 将军饮马模型 2024年中考数学核心几何模型重点突破(全国通用):

    这是一份专题33 将军饮马模型 2024年中考数学核心几何模型重点突破(全国通用),文件包含专题33将军饮马模型答案详解docx、专题33将军饮马模型docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。

    专题30 几何变换之平移模型 2024年中考数学核心几何模型重点突破(全国通用):

    这是一份专题30 几何变换之平移模型 2024年中考数学核心几何模型重点突破(全国通用),文件包含专题30几何变换之平移模型答案详解docx、专题30几何变换之平移模型docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题24 勾股定理中的蚂蚁爬行模型 2024年中考数学核心几何模型重点突破(全国通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map