人教版八年级下册19.2.3一次函数与方程、不等式学案
展开班级: 姓名: 组号:
【课时安排】
1课时
学前准备
【预习导航】
旧知回顾
1.画出函数y=2x+6的图象,利用图象:(1)求方程2x+6=0的解;
求不等式的解;(3)若,求x的取值范围。
【新知探究】
新知梳理
1.在同一坐标系内画出函数y1=x-5与y2=-x+1的图象,
可以看出,它们交点的横坐标为 利用图象填空:
(1)当x 时,y1>0, 当x 时,-x+1<0
当x 时,y1>y2 , 当x 时,y1< y2
(2).问 :不等式x-5>-x+1的解集与函数y1=x-5与y2=-x+1的图象有什么关系?
试一试
1.如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),
则根据图象可得不等式3x+b>ax-3的解集是_______________。
O
2
2
-2
-2
x
y
y=3x+b
y=ax-3
x
y
·
y1
y2
6
4
·
·
2.如图,直线与直线相交点(6,4),
那么方程 =的解是 ,
不等式>的解集是 .
★通过预习你还有什么困惑
课堂活动、记录
1.一次函数与一元一次不等式的区别和联系。
2.如何根据一次函数图象快速得出不等式的解?
【精练反馈】
A组:
1.如果函数y=ax+b(a<0,b
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
2.一次函数与的图象如图6,则下列结论①;②;③当时, 中,正确的个数是 ( )
A.0 B.1 C.2 D.3
x
y
O
3
第2题
3.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是( )
A.(0,1) B.(-1,0) C.(0,-1) D.(1,0)
4.移动电话有下面两种计费方式,用函数方法解答何时两种计费方式费用相等。
(1)分别写出两种通讯业务每月应缴费用y(元)与通话时间x(分)之间的关系式?
(2)在同一坐标系中作出它们的图像。
(3)从图象上看,你选择哪类通讯业务合算?
【学习小结】
课堂小结
一次函数与一元一次不等式的区别与联系
【拓展延伸】
(选做题)
1.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,
则关于x的不等式﹣x+m>nx+4n>0的整数解为( )
A.﹣1 B. ﹣5 C.﹣4 D. ﹣3
2.在平面直角坐标系中,直线和交于点,点在直线上,过点作轴的垂线,交直线于点.
(1)若=2,求的面积;
(2)若,求点的坐标.
方式一
方式二
月租费(元/月)
30
0
本地通话费(元/min)
0.30
0. 40
初中数学人教版八年级下册19.2.3一次函数与方程、不等式学案及答案: 这是一份初中数学人教版八年级下册19.2.3一次函数与方程、不等式学案及答案,共6页。学案主要包含了课堂活动,精练反馈,课堂小结,拓展延伸等内容,欢迎下载使用。
初中数学19.2.3一次函数与方程、不等式导学案及答案: 这是一份初中数学19.2.3一次函数与方程、不等式导学案及答案,共4页。学案主要包含了学习目标,学习重点,学习难点,学习过程,达标检测等内容,欢迎下载使用。
人教版八年级下册19.2.3一次函数与方程、不等式学案: 这是一份人教版八年级下册19.2.3一次函数与方程、不等式学案,共3页。学案主要包含了学习目标,学习重点,学习难点,学习过程等内容,欢迎下载使用。