初中数学冀教版八年级上册16.3 角的平分线精品课后练习题
展开一、选择题
1.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )
A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD
2.如图,用直尺和圆规作∠AOB的角平分线,能得出射线OC就是∠AOB的角平分线的根据是( )
A.SSS B.SAS C.ASA D.AAS
3.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为( )
A.PN<3 B.PN>3 C.PN≥3 D.PN≤3
4.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( )
A.AC,BC两边高线的交点处
B.AC,BC两边中线的交点处
C.AC,BC两边垂直平分线的交点处
D.∠A,∠B两内角平分线的交点处
5.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在( )
A.在AC、BC两边高线的交点处
B.在AC、BC两边中线的交点处
C.在∠A、∠B两内角平分线的交点处
D.在AC、BC两边垂直平分线的交点处
6.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )
A.10 B.7 C.5 D.4
7.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )
A.3 B.4 C.6 D.5
8.如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是( )
A.8 B.9 C.10 D.11
9.如图,已知△ABC,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC于D,OH⊥BC于H,若∠BAC=60°,OH=3cm,OA长为( )cm.
A.6 B.5 C.4 D.3
10.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP.
有以下结论:
①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBD+S△PCE=S△PBC.
其中正确的个数是( )
A.2 B.3 C.4 D.5
二、填空题
11.Rt△ABC中,∠B=90°,AD平分∠BAC,DE⊥AC于E,若BC=8,DE=3,则CD长度是 .
12.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC=9,则△BDC的面积是 .
13.如图,△ABC的角平分线交于点P,已知AB,BC,CA的长分别为5,7,6,则S△ABP∶S△BPC∶S△APC=_________.
14.如图,AD是△ABC的角平分线,AB:AC=3:2,△ABD的面积为15,则△ACD面积为 .
15.如图,△ABC的周长为24cm,BC=10cm,AD为角平分线,若点D到AB边的距离为eq \f(24,7)cm,则△ABC的面积为 cm2.
16.如图,已知△ABC的周长是21,BO,CO分别平分∠ABC和∠ACB,OD⊥BC,垂足为D,且OD=3,则△ABC的面积是 .
三、解答题
17.如图:求作一点P,使PM=PN,并且使点P到∠AOB的两边的距离相等.
18.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,
(1)求证:AD平分∠BAC;
(2)已知AC=20, BE=4,求AB的长.
19.如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.
(1)若∠ABE=60°,求∠CDA的度数.
(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.
20.如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.
21.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.说明:
(1)CD=EB;
(2)AB=AF+2EB.
22.如图,在△ABC中,AD平分∠BAC.
(1)求证:S△ABD:S△ACD=AB:AC;
(2)若AB=4,AC=5,BC=6,求BD的长.
答案
1.B
2.A.
3.C.
4.C
5.C
6.C
7.A
8.C.
9.A.
10.C
11.答案为:5.
12.答案为:9.
13.答案为:5:7:6.
14.答案为:10;
15.答案为:24.
16.答案为:eq \f(63,2).
17.解:如图,点P即为所求.
(1)作∠AOB 的平分线OC;
(2)连结MN,并作MN 的垂直平分线EF,交OC于P,连结PM、PN,则P点即为所求.
18.证明:(1)∵DE⊥AB,DF⊥AC,
∴∠E=∠DFC=90°,
∴在Rt△BED和Rt△CFD中
BD=CD,BE=CF.
∴Rt△BED≌Rt△CFD(HL),
∴DE=DF,
∵DE⊥AB,DF⊥AC,
∴AD平分∠BAC;
(2)解:∵Rt△BED≌Rt△CFD,
∴AE=AF,CF=BE=4,
∵AC=20,
∴AE=AF=20﹣4=16,
∴AB=AE﹣BE=16﹣4=12.
19.解:(1)∵AC平分∠BCD,AE⊥BC AF⊥CD,
∴AE=AF,
在Rt△ABE和Rt△ADF中,AE=AF,AB=AD.
∴Rt△ABE≌Rt△ADF,
∴∠ADF=∠ABE=60°,
∴∠CDA=180°﹣∠ADF=120°;
(2)由(1)知:Rt△ABE≌Rt△ADF,
∴FD=BE=1,AF=AE=2,CE=CF=CD+FD=5,
∴BC=CE+BE=6,
∴四边形AECD的面积=△ABC的面积+△ACD的面积=10.
20.证明:连接DB.
∵点D在BC的垂直平分线上,
∴DB=DC;
∵D在∠BAC的平分线上,DE⊥AB,DF⊥AC,
∴DE=DF;
∵∠DFC=∠DEB=90°,
在Rt△DCF和Rt△DBE中,
DB=DC,DE=DF.
∴Rt△DCF≌Rt△DBE(HL),
∴CF=BE(全等三角形的对应边相等).
21.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△CFD和Rt△EBD中,
,
∴Rt△CFD≌Rt△EBD(HL),
∴CD=EB;
(2)在△ACD和△AED中,
,
∴△ACD≌△AED(AAS),
∴AC=AE,
∴AB=AE+EB=AC+EB=AF+FC+EB=AF+2EB.
22.证明:(1)过D作DE⊥AB于E,DF⊥AC于F,
∵AD平分∠BAC,
∴DE=DF,
∵S△ABD=eq \f(1,2)AB•DE,S△ACD=eq \f(1,2)AC•DF,
∴S△ABD:S△ACD=(eq \f(1,2)AB•DE):(eq \f(1,2)AC•DF)=AB:AC;
(2)解:∵AD平分∠BAC,
∴=eq \f(4,5),
∴BD=eq \f(4,5)CD,
∵BC=6,
∴BD=eq \f(8,3).
冀教版八年级上册16.3 角的平分线同步测试题: 这是一份冀教版八年级上册16.3 角的平分线同步测试题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
数学冀教版16.3 角的平分线练习题: 这是一份数学冀教版16.3 角的平分线练习题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中冀教版第十六章 轴对称和中心对称16.3 角的平分线随堂练习题: 这是一份初中冀教版第十六章 轴对称和中心对称16.3 角的平分线随堂练习题,共7页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。