河南省商丘市第一高级中学2023-2024学年高三上学期期中数学试题(Word版附答案)
展开一、单选题:(本题共8小题,每题5分,共40分)
1.若是虚数单位,则复数的虚部等于( )
A.2B.C.D.
2.设集合,,则( )
A.B.C.D.
3.函数的图象可能是( ).
A.B.
C.D.
4.已知命题“,使”是假命题,则实数a的取值范围是( )
A.B.C.D.
5.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆.嫦娥五号返回舱之所以能达到如此高的再入精度,主要是因为它采用弹跳式返回弹道,实现了减速和再入阶段弹道调整,这与“打水漂”原理类似(如图所示).现将石片扔向水面,假设石片第一次接触水面的速率为100m/s,这是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率为上一次的90%,若要使石片的速率低于60 m/s,则至少需要“打水漂”的次数为(参考数据:取,)( )
A.4B.5C.6D.7
6.若为等差数列,是其前n项的和,且,为等比数列,,则的值为( )
A.B.C.D.
7.设非零向量的夹角为θ,定义运算.下列叙述错误的是( )
A.若,则
B.(为任意非零向量)
C.设在中,,,则
D.若,则
8.已知函数的图象上有且仅有两个不同的点关于直线的对称点在的图象上,则实数k的取值范围是( )
A.B.C.D.
二、多选题(本题共4小题,每题5分,部分选对得2分,共20分)
9.已知数列满足,则( )
A.B.的前n项和为
C.的前100项和为D.的前20项和为284
10.已知函数,则( )
A.是周期函数B.函数在定义域上是单调递增函数
C.函数是偶函数D.函数的图象关于点对称
11.已知向量,,其中,则下列说法正确的是( )
A.若,可以作为平面向量的一组基底,则
B.若,则
C.若,则有最小值
D.若,则
12.设函数,如图是函数及其导函数的部分图像,则( )
A.B.
C.与y轴交点坐标为
D.与的所有交点中横坐标绝对值的最小值为
三、填空题(本题共4小题,每题5分,共20分)
13.已知,则______.
14.已知数列满足,,则数列的前30项和为______.
15.已知,则不等式的解集为______.
16.在中,角A,B,C所对的边分别为a,b,c,点O为外接圆的圆心,若,且,,则的最大值为______.
四、解答题(本题共6小题,共70分)
17.(10分)设的内角A,B,C的对边分别为a,b,c,已知,且.
(1)求角C的大小;
(2)若向量与共线,求的周长.
18.(12分)已知函数,且满足.
(1)求函数的定义域及a的值;
(2)若关于x的方程有两个不同的实数解,求t的取值范围.
19.(12分)已知数列中,,
(1)证明:数列是等差数列,并求数列的通项公式;
(2)设,数列的前n项和为,若恒成立,试求实数λ的取值范围.
20.(12分)已知向量,,函数.
(1)若,求的值;
(2)已知为锐角三角形,a,b,c为的内角A,B,C的对边,,且,求面积的取值范围.
21.(12分)已知函数定义在区间内,,且当时,恒有.
(1)证明:为奇函数;
(2)若数列满足,,,,且对,,求λ的取值范围.
22.(12分)已知函数.
(1)若,求实数a的取值范围;
数学期中答案
一.B B A B C D B A ABD ABD ACD AD
二.13. 14.465 15. 16.
17,【详解】(1)因为,所以
所以,所以
所以,所以
因为是的内角,所以
(2)因为向量与共线
所以,即
由余弦定理可得,即
解得
所以的周长为
18.(1)由,解得.
所以函数的定义域为.
因为,
所以.
所以.
又,
故化简得所求.
(2)由(1)可知,其中,
所以由题设得关于x的方程在内有两个不同的实数解.(*)
设函数,
则因为该函数图像的对称轴方程为,
所以结合(*)知只需,
解得.
故所求实数t的取值范围是.
19. 【详解】(1)两边同时除以,
数列是首项,公差为2的等差数列,
,
.
(2),可得,
,即,即恒成立.
.
20. 【详解】(1),,
则;
;
(2),
又,所以,,得,即,
因为,所以,
所以,
所以,
解得,则
故,
即面积的取值范围为.
21. 【详解】(1)证明:由题意知的定义域为.
令,则,故.
再令,则,
所以.
故为奇函数.
(2)由题意得,
又,
所以,即,
所以,
故是首项为,公比为2的等比数列,
所以,
所以,
所以,
两式相减得,
所以.
所以恒成立,即恒成立.
设,则,所以数列递增.
当n为奇函数时,,当时,有最大值,故;
当n为偶数时,,当时,有最小值,故.
综上,的取值范围是.
22. 【详解】(1)因为,
所以,
由得或.
①当时,因为,不满足题意,
②当时,在上单调递减,在上单调递增,
于是,解得,
所以的取值范围为.
(2)函数,定义域为,,
因为,是函数的两个极值点,所以,是方程的两个不等正根,
则有,,,
得,对称轴,故,.
且有,,
河南省南阳市新野县第一高级中学2023-2024学年高三上学期12月月考数学试题(Word版附解析): 这是一份河南省南阳市新野县第一高级中学2023-2024学年高三上学期12月月考数学试题(Word版附解析),共28页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
河南省信阳市信阳高级中学2023-2024学年高三上学期11月第一次模拟数学试题(Word版附解析): 这是一份河南省信阳市信阳高级中学2023-2024学年高三上学期11月第一次模拟数学试题(Word版附解析),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省实验中学2023-2024学年高一上学期期中数学试题(Word版附答案): 这是一份河南省实验中学2023-2024学年高一上学期期中数学试题(Word版附答案),共11页。