搜索
    上传资料 赚现金
    英语朗读宝

    高中必修第一册《4 力的合成和分解》导学案-统编人教版

    高中必修第一册《4 力的合成和分解》导学案-统编人教版第1页
    高中必修第一册《4 力的合成和分解》导学案-统编人教版第2页
    高中必修第一册《4 力的合成和分解》导学案-统编人教版第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中必修第一册《4 力的合成和分解》导学案-统编人教版

    展开

    这是一份高中必修第一册《4 力的合成和分解》导学案-统编人教版,共33页。
    4.力的合成和分解1.知道什么是共点力,知道什么是合力、分力,知道什么是力的合成和分解,体会物理学中常用的研究方法——等效替代法。2.了解探究互成角度的两个力的合成规律的方法,掌握平行四边形定则,知道力的合成与分解都遵循平行四边形定则。3.根据平行四边形定则,会用作图和计算的方法求解作用在一个物体上的两个和多个共点力的合力;会用作图和计算的方法将力进行分解,求解分力的大小和方向。4.知道矢量和标量的概念,能区分矢量和标量,掌握矢量和标量相加的方法。一、共点力、合力和分力1.共点力:几个力如果都作用在物体的eq \o(□,\s\up4(01))同一点,或者它们的eq \o(□,\s\up4(02))作用线相交于一点,这几个力叫作共点力。2.合力:假设一个力单独作用的eq \o(□,\s\up4(03))效果跟某几个力共同作用的eq \o(□,\s\up4(04))效果相同,这个力就叫作那几个力的合力。3.分力:假设几个力共同作用的eq \o(□,\s\up4(05))效果跟某个力单独作用的eq \o(□,\s\up4(06))效果相同,这几个力就叫作那个力的分力。二、力的合成和分解1.定义:在物理学中,我们把求几个力的合力的过程叫作eq \o(□,\s\up4(01))力的合成,把求一个力的分力的过程叫作eq \o(□,\s\up4(02))力的分解。2.平行四边形定则:求两个力的合成,如果以表示这两个力的有向线段为eq \o(□,\s\up4(03))邻边作平行四边形,这两个邻边之间的eq \o(□,\s\up4(04))对角线就代表合力的大小和方向。3.多个共点力合成的方法:先求出任意两个力的eq \o(□,\s\up4(05))合力,再求出这个合力跟eq \o(□,\s\up4(06))第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。4.分解法则:力的分解同样遵从eq \o(□,\s\up4(07))平行四边形定则。把已知力F作为平行四边形的eq \o(□,\s\up4(08))对角线,与力F共点的平行四边形的两个eq \o(□,\s\up4(09))邻边就表示力F的两个分力。同一个力F可以分解为eq \o(□,\s\up4(10))无数对大小、方向不同的分力。三、矢量和标量1.矢量:既有大小又有方向,相加时遵从eq \o(□,\s\up4(01))平行四边形定则的物理量叫作矢量。如力、位移、速度、加速度等。2.标量:只有大小,没有方向,相加时遵从eq \o(□,\s\up4(02))算术法则的物理量叫作标量。如质量、路程、温度、功、电流等。判一判(1)合力与分力同时作用在一个物体上。(  )(2)由作出的力的平行四边形可知,合力可能小于分力。(  )(3)作用于不同物体上的两个力,只要作用线交于一点,就可以进行力的合成。(  )(4)一个力不可能分解出比它自身大的力。(  )(5)由于矢量的方向用正负表示,故具有正负值的物理量一定是矢量。(  )(6)矢量与标量的本质区别是它们的运算方法不同。(  )提示:(1)× (2)√ (3)× (4)×(5)× 具有正负值的物理量不一定是矢量,如温度有正负值,但它是标量。(6)√ 判断一个物理量是标量还是矢量,不是看它是否有方向或有正负值,而是看它的运算采用什么法则。想一想(1)受力分析时合力和分力都要分析吗?提示:合力和分力是一种等效替代的关系,受力分析时只能分析其中一种。(2)如图所示,为了行车方便和安全,高大的桥往往有很长的引桥,在引桥上,汽车的重力有什么作用效果?从力的分解的角度分析,引桥很长有什么好处?提示:汽车重力的两个作用效果是垂直桥面向下使汽车压桥面和沿桥面向下使汽车下滑或阻碍汽车上行。高大的桥建造很长的引桥可以减小桥面的坡度,即减小汽车重力沿桥面向下的分力,使行车更安全。(3)“有方向的物理量一定都是矢量,没有方向的物理量一定都是标量”的说法对吗?提示:不对。标量与矢量的根本区别在于运算法则的不同,而不是有无方向。标量有时候也有方向,但这个方向与矢量的方向的本质不同。如电流有方向,但求和时用算术法则,所以电流是标量。课堂任务 合力和分力的关系仔细观察下列图片,认真参与“师生互动”。活动1:如图所示,两个孩子共同提起一桶水,使水桶保持静止;一个成年人提起同样的一桶水并使之保持静止。那么这两个孩子对水桶的作用效果与这个成年人对水桶的作用效果相同吗?提示:相同。都是把同样的一桶水提起并使之保持静止,作用效果相同。活动2:这两个孩子对水桶的作用力F1、F2能否用这个成年人的作用力F来代替?这体现了一种什么思想方法?提示:如图甲所示,F1、F2共同作用的效果与水桶的重力平衡。如图乙所示,F的作用效果也与水桶的重力平衡。从这个角度来说,F与F1、F2是一种等效关系,可以等效替代。这体现了等效替代的思想方法。活动3:这两个孩子的力是不是就是这个成年人的力?为什么?提示:这两个孩子的力产生的效果和这个成年人的力产生的效果相同,但是这两个孩子的力和这个成年人的力施力物体不同,它们不是同一个力。活动4:用一个弹簧秤测出教室里的锁头的重力,然后用两个弹簧秤成一定角度测同一锁头的重力,比较两次测量中弹簧秤的示数,有何启示?提示:第一次测量时弹簧秤的示数并不等于第二次测量时两弹簧秤的示数之和,即合力和分力在作用效果上是等效的,但合力大小并不一定等于两分力的大小之和。活动5:讨论、交流、展示,得出结论。1.合力与分力之间的关系是一种等效替代的关系。2.合力的作用效果与它的分力共同作用的效果相同,但不能理解为物体在受到这些分力作用的同时,还受到合力的作用。在力的合成中,分力是实际存在的,每个分力都有与之对应的施力物体,而合力是一个设想的力,是“虚拟”的,没有与之对应的施力物体。3.合力与分力的相关性例1 (多选)关于力F1、F2及它们的合力F,下列说法正确的是(  )A.F一定与F1、F2共同作用产生的效果相同B.F1、F2一定是同种性质的力C.F1、F2一定是同一个物体受到的力D.F1、F2与F可以是物体同时受到的三个力 (1)合力与分力的关系是什么?提示:等效替代的关系。(2)在力的合成中,两分力的性质一定相同吗?提示:不一定相同。[规范解答] 两个分力的作用效果与其合力的作用效果一定是相同的,合力可以等效替代两个分力,A正确;F1、F2可以是同种性质的力,也可以是不同性质的力,B错误;F1、F2一定是同一个物体受到的力,作用在两个物体上的力是不能合成的,C正确;F的作用效果与F1、F2共同作用的效果相同,但是F1、F2与合力F不能是物体同时受到的三个力,D错误。[完美答案] AC根据合力与分力的概念,知道它们之间是等效替代的关系,即合力的作用效果与它的分力共同作用的效果相同。eq \a\vs4\al([变式训练1]) (多选)关于力的合成,下列说法中正确的是(  )A.一个物体受到两个力的作用,求出它们的合力,物体便受到三个力的作用B.如果一个力的作用效果与几个力共同作用的效果相同,这个力就是那几个力的合力C.不同种类的力,不能进行合成D.某个力单独作用与其他几个力共同作用使物体发生的运动状态变化相同,则这个力就是那几个力的合力答案 BD解析 一个物体受到两个力的作用,这两个力是实际存在的力,而合力则是与这两个力效果相同的力,不是物体实际受到的力,A错误;合力与分力的关系是等效替代,等效即为相同的作用效果,B、D正确;力的合成中,两分力的种类不一定相同,C错误。课堂任务 探究二力合成的规律仔细观察下列图片,认真参与“师生互动”。活动1:为了探究合力和分力的定量关系,我们做如图所示的实验。实验中是如何保证F1、F2与合力F的作用效果是相同的?提示:实验中,两次将轻质小圆环拉到同一位置O处,即两次使橡皮条的形变情况相同,我们就认为F1、F2与合力F的作用效果是相同的。活动2:实验中要记录哪些数据?如何把力直观形象又定量地表示出来?提示:实验中要记录的数据有:O点的位置、弹簧测力计每次的示数、对应细绳的方向。要想把力直观形象又定量地表示出来需要作出三个力的图示。活动3:根据多次实验,都得到图丁的实验结果,对于二力合成的规律,你的结论是什么?提示:两个力合成时,以表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。活动4:上述规律叫作平行四边形定则。如果先用拉力F把小圆环拉到O点,再用拉力F1和F2共同将小圆环拉至O点,你能得出什么结论?提示:从实验步骤看,F1和F2就是F的分力,这就变成了“探究力的分解规律”的实验,由于各个力的数据都没有改变,因此,力的分解也遵从平行四边形定则。活动5:讨论、交流、展示,得出结论。1.实验结论:求两个力的合成,如果以表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。这个规律叫作平行四边形定则。力的分解也遵从平行四边形定则。2.减小实验误差的措施(1)使用时弹簧测力计与板面平行。(2)在满足合力不超过弹簧测力计量程及橡皮条形变不超过弹性限度的条件下,应使拉力尽量大一些。(3)画力的图示时,应该选定恰当的标度,尽量使图画得大一些,要严格按力的图示要求和几何作图法作出合力。(4)在同一次实验中,小圆环两次到达的位置O一定要相同。(5)用两个弹簧测力计互成角度地拉小圆环时,其夹角不宜太小,也不宜太大,在60°到120°之间为宜。3.三角形定则:把两个矢量首尾相接,从第一个矢量的始端指向第二个矢量的末端的有向线段就表示合矢量的大小和方向。三角形定则与平行四边形定则实质上是相同的。例2 某同学在学完“力的合成”后,想在家里做实验验证力的平行四边形定则。他从学校的实验室借来两个弹簧秤,按如下步骤进行实验。A.在墙上贴一张白纸用来记录弹簧秤弹力的大小和方向B.在一个弹簧秤的下端悬挂一个装满水的水杯,记下静止时弹簧秤的读数FC.将一根大约30 cm长的细线从杯带中穿过,再将细线两端分别拴在两个弹簧秤的挂钩上。在靠近白纸处用手对称地拉开细线,使两个弹簧秤与细线在同一直线上,在白纸上记下细线的方向,弹簧秤的示数如图甲所示D.在白纸上按一定标度作出两个弹簧秤的弹力的图示,如图乙所示,根据力的平行四边形定则可求出这两个力的合力F′(1)在步骤C中,弹簧秤的读数为________ N。(2)在步骤D中,合力F′=________ N。(3)若________________________________,就可以验证力的平行四边形定则。 (1)读弹簧测力计的读数时,需要估读一位吗?提示:需要。(2)作力的图示时,应包含几个要素?分别是什么?提示:三个,即力的大小、方向、作用点。[规范解答] (1)弹簧测力计读数,每1 N被分成10个小格,则1个小格就等于0.1 N,图指针落在3 N所在小格处,所以读数为3.00 N。(2)以两个分力为邻边作出平行四边形,如下图所示:根据力的图示,可以测量出合力F′的大小大约为5.5 N。(3)根据实验原理可知,只要合力F′在竖直方向且数值与F近似相等,即可验证力的平行四边形定则。[完美答案] (1)3.00 (2)5.5(5.2~5.8均可)(3)F′在竖直方向且数值与F近似相等用作图法求合力时,应注意同一题中必须统一标度,且要严格按照尺规作图,作图时要明确哪些该画直线,哪些该画虚线,箭头标在什么位置等。eq \a\vs4\al([变式训练2]) 探究两个互成角度的力的合成规律的实验情况如图1所示,其中A为固定橡皮条的图钉,O为橡皮条与细绳的结点,OB和OC为细绳,第一次用两个弹簧秤同时拉OB和OC,第二次只用一个弹簧秤拉OB。(1)下列说法正确的是________(填字母代号)。A.必须将弹簧秤都拉到相同刻度B.只要将橡皮条拉伸相同长度即可C.需要记录下拉力的大小和方向D.必须将橡皮条和绳的结点O拉到相同位置(2)完成该实验的下列措施中,能够减小实验误差的是________(填字母代号)。A.拉橡皮条的绳细一些并且长一些B.标记同一细绳方向的两点尽量近一些C.使拉力F1和F2的夹角尽量等于90°D.拉橡皮条时,弹簧秤、橡皮条、细绳应贴近木板且与木板面平行(3)如图2所示,甲、乙两图分别是某两位同学在做以上实验时得到的结果,其中符合实验事实的是________。(填“甲”或“乙”,其中力F′是用一个弹簧秤时力的图示)答案 (1)CD (2)AD (3)甲解析 (1)实验的目的是为了研究合力与分力的定量关系。根据合力与分力是等效的,本实验橡皮条两次沿相同方向拉伸的长度要相同,B错误;要作出力的图示,所以要记录力的大小和方向,C正确;在白纸上标下第一次橡皮条和绳的结点的位置,第二次将橡皮条和绳的结点拉到相同位置,表明两次力的作用效果相同,即两个拉力和一个拉力等效,而弹簧秤不必拉到相同刻度,A错误,D正确。(2)为了更加准确地记录力的方向,拉橡皮条的细绳要长些、细些,标记同一细绳方向的两点要远些,A正确,B错误;两拉力F1、F2之间的夹角不宜过小,以60°~120°为宜,C错误;本实验是通过在白纸上作力的图示来验证平行四边形定则,为了减小实验误差,弹簧秤、细绳、橡皮条都应贴近木板与木板面平行,否则误差较大,D正确。(3)用平行四边形画出的合力可以与橡皮条拉力的方向有偏差,但用一个弹簧秤拉结点的拉力与橡皮条的拉力一定在同一直线上,故甲符合实验事实。课堂任务 求合力的方法仔细观察下列图片,认真参与“师生互动”。活动1:如图甲所示,当两个力互相垂直时怎样用计算法求合力?提示:相互垂直的两个力的合成,如图甲所示,根据勾股定理F=eq \r(F\o\al(2,1)+F\o\al(2,2)),合力F与分力F1的夹角tanα=eq \f(F2,F1)。活动2:如图乙所示,怎样求两个大小相等、夹角为θ的力的合力?提示:夹角为θ的两个等大的力的合成,如图乙所示,作出的平行四边形为菱形,利用“菱形的对角线互相垂直且平分”这一基本性质,解直角三角形求得合力F合=2Fcoseq \f(θ,2),合力与每一个分力的夹角等于eq \f(θ,2)。活动3:如图丙所示,如何求多个力的合力?提示:可以用作图法(平行四边形定则或三角形定则)或计算法先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。活动4:讨论、交流、展示,得出结论。一、两个力的合成1.作图法:根据平行四边形定则用作图工具作出平行四边形,然后用测量工具测量出合力的大小、方向,具体操作流程如下:2.计算法(1)两分力共线时①若F1与F2方向相同,则合力大小F=F1+F2,方向与F1和F2的方向相同。②若F1与F2方向相反,则合力大小F=|F1-F2|,方向与F1和F2中力较大的方向相同。(2)两分力不共线时:可以先根据平行四边形定则作出分力及合力的示意图,然后由几何知识求解对角线,即为合力。以下为求合力的两种常见特殊情况:3.合力大小与两分力夹角的关系合力的大小不一定等于分力大小的代数和,也不一定比分力大。合力可以大于分力,也可以等于分力,还可以小于分力。两个大小一定的力进行合成时,合力的大小与两分力夹角θ的关系是:θ(0°≤θ≤180°)越大,合力越小。二、多个力的合成1.合成方法:多个力的合成的基本方法仍是平行四边形定则。具体做法是先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。2.合成技巧:求解多个力的合力时,一般常见的合成技巧如下:(1)将共线的力合成(方向相同或相反)。(2)将相互垂直的力合成。(3)将两个大小相等,夹角为θ(一般为60°或120°)的力合成。3.三个力的合力范围的确定(1)最大值:三个力方向均相同时,合力最大,Fmax=F1+F2+F3。(2)最小值①若一个力在另外两个力的和与差之间,则它们的合力的最小值为零。②若一个力不在另外两个力的和与差之间,则它们的合力的最小值等于三个力中最大的力减去另外两个力。 F3的大小介于F1、F2的和与差之间,也可以说成是任意两个力的大小之和大于第三个力大小或任意两个力的大小之差小于第三个力大小,即三个力的大小具有的特点和三角形三边长度具有的特点相同时,这三个力的合力的最小值为零。例3 如图所示,为使电线杆稳定,在杆上加了两根拉线CA和CB,若每根拉线的拉力都是300 N,两根拉线与地面的夹角均为60°,两根拉线在同一平面内。求两根拉线的拉力的合力的大小和方向。 (1)求合力的方法有哪些?提示:作图法、计算法。(2)题中的力有什么特点?提示:两个力大小相等,且夹角是60°。[规范解答] 两根拉线的拉力沿拉线方向,以表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示它们的合力的大小和方向。(1)解法一(作图法):如图甲所示,自C点作两条有向线段代表两拉力的方向,夹角为60°。用0.5 cm长线段表示100 N,则代表两拉力的线段长都是1.5 cm,作出平行四边形CB′DA′,其对角线CD表示F1、F2两拉力的合力F,量得CD的长度约为2.60 cm,所以合力大小F=eq \f(100,0.5)×2.60 N=520 N。用量角器量得∠DCA′=∠DCB′=30°,所以合力方向竖直向下。(2)解法二(计算法):如图乙所示,先画两根拉线的拉力的示意图,并以表示这两个拉力的有向线段为邻边作平行四边形,由于CA′=CB′,故▱CB′DA′为菱形,两对角线互相垂直且平分,∠A′CD=∠B′CD=30°,则合力F=2F1cos30°=2×300×eq \f(\r(3),2) N≈519.6 N,方向竖直向下。[完美答案] 519.6 N 方向竖直向下(1)作图法和计算法均为矢量运算的通用方法。(2)作图时,合力、分力要共点,实线、虚线要分清,标度要唯一且适当。eq \a\vs4\al([变式训练3-1]) 如图所示,有五个力作用于同一点O,表示这五个力的有向线段分别为一个正六边形的两个邻边和三条对角线。已知F3=10 N,则这五个力的合力大小为(  )A.0 B.20 N C.30 N D.40 N答案 C解析 根据平行四边形定则,F1与F4的合力与F3的大小、方向均相同,F2与F5的合力与F3的大小、方向均相同,这五个力的合力等于3F3,所以合力的大小为30 N,C正确。eq \a\vs4\al([变式训练3-2]) 三个共点力的大小分别是F1、F2、F3,关于它们的合力F的大小,下列说法中正确的是(  )A.F大小的取值范围一定是0≤F≤F1+F2+F3B.F至少比F1、F2、F3中的某一个大C.若F1∶F2∶F3=3∶6∶8,只要适当调整它们之间的夹角,一定能使合力为零D.若F1∶F2∶F3=3∶6∶2,只要适当调整它们之间的夹角,一定能使合力为零答案 C解析 这三个力合力的最小值不一定为零,合力不一定大于分力,A、B错误;若F1∶F2∶F3=3∶6∶8,设三个力大小分别为3F0、6F0、8F0,由于其中任何一个力的大小都在其余两个力的合力大小的范围之内,故这三个力的合力可以为零,C正确;同理可知D错误。 课堂任务 力的分解及应用仔细观察下列图片,认真参与“师生互动”。活动1:如图甲所示,已知力F,如果不加限制,可以分解出多少对分力?提示:根据力的分解遵循平行四边形定则(或三角形定则),如果没有限制,对于同一条对角线,可以作出无数个不同的平行四边形。也就是说,同一个力F可以分解为无数对大小、方向不同的分力。活动2:如图乙所示,利用一根铅笔将拴有重物的细绳撑起,感受重物竖直向下拉细绳的力产生了哪两个作用效果?如图丙所示,小孩拉小车前进的过程中,小车受到的拉力有怎样的作用效果?如图丁所示,小孩滑滑梯的过程中,重力有怎样的作用效果?提示:图乙中,重物竖直向下拉细绳的力有两个作用效果:一个是沿绳BO斜向下拉手指;另一个是使铅笔向里压手掌。图丙中,小车受到的拉力有两个作用效果:一个是水平向前拉小车;另一个是竖直向上提小车。图丁中,重力有两个作用效果:一个是使小孩沿斜面下滑;另一个是使小孩压紧斜面。活动3:按照力的实际作用效果来分解一个力的步骤是怎样的?提示:(1)正确找出力的两个作用效果,画出产生两个作用效果的力的方向,即为两个分力的方向。(2)利用合力和两个分力的方向作出平行四边形。(3)根据几何关系求出两个分力的大小。活动4:将活动2中小车受到的拉力、滑滑梯的小孩的重力按其作用效果进行分解,并求出各力的分力,分析这些分力是不是物体的真实受力?提示:将小车受到的拉力分解,如图a所示,F1=Fcosθ,F2=Fsinθ,将小孩所受重力分解,画侧视图,如图b所示,F1′=Gcosα,F2′=Gsinα,其中F1、F2和F1′、F2′不是物体的真实受力。一个实际存在的力的分力只是与这个力实际产生的效果相同,但并不存在。所以,在画受力分析图时,不能把分力作为物体受到的力画在受力物体上。活动5:讨论、交流、展示,得出结论。1.对力的分解的讨论(1)没有限制条件的力的分解:一个力分解为两个力,从理论上讲有无数组解。因为以同一条线段为对角线的平行四边形有无穷多个(如图甲、乙所示)。由图乙可知,将已知力F分解为两个等大的分力时,两分力间的夹角越大,两分力越大。(2)有限制条件的力的分解①已知合力和两个分力的方向时,有唯一解。②已知合力和一个分力的大小和方向时,有唯一解。③已知合力F以及一个分力F1的方向和另一个分力F2的大小时,若F与F1的夹角为α,有下面几种可能:a.当Fsinα

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map