人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.4 圆周角学案及答案
展开【学习目标】
1.了解圆周角的概念。
2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
4.熟练掌握圆周角的定理及其推理的灵活运用。
设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题
【学习重难点】
1.学习重点:圆周角定理及推论的应用.
2.学习难点:理解圆周角定理及推论及辅助线的添加.
【学习过程】
温故知新:
(学生活动)同学们口答下面两个问题。
1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢?
自主学习:
什么叫圆周角?圆周角的两个特征:。
在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题。
(1)一个弧上所对的圆周角的个数有多少个?
(2)同弧所对的圆周角的度数是否发生变化?
(3)同弧上的圆周角与圆心角有什么关系?
3.默写圆周角定理及推论并证明。
4.能去掉“同圆或等圆”吗?若把“同弧或等弧”改成“同弦或等弦”性质成立吗?
5.在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?
典型例题:
例1.如图,⊙O的直径AB为10cm,弦AC为6cm,,∠ACB的平分线交⊙O于D,求BC.AD.BD的长。
例2.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
巩固练习:
总结反思:
【达标检测】
1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于( )。
A.140° B.110° C.120° D.130°
(1)(2)(3)
2.如图2,∠1.∠2.∠3.∠4的大小关系是( )
A.∠4<∠1<∠2<∠3 B.∠4<∠1=∠3<∠2
C.∠4<∠1<∠3∠2 D.∠4<∠1<∠3=∠2
3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于( )
A.100° B.110° C.120° D.130°
4.半径为2a的⊙O中,弦AB的长为2a,则弦AB所对的圆周角的度数是________。
5.如图4,A、B是⊙O的直径,C.D.E都是圆上的点,则∠1+∠2=_______。
(4)(5)
6.如图5,于,若,则
7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.
【拓展创新】
1.如图,已知AB=AC,∠APC=60°
(1)求证:△ABC是等边三角形。
(2)若BC=4cm,求⊙O的面积。
初中24.1.4 圆周角学案及答案: 这是一份初中24.1.4 圆周角学案及答案,共5页。学案主要包含了课时安排,第一课时,学习目标,学习重难点,学习过程,第二课时,第三课时等内容,欢迎下载使用。
初中数学人教版九年级上册24.1.4 圆周角导学案及答案: 这是一份初中数学人教版九年级上册24.1.4 圆周角导学案及答案,共5页。学案主要包含了旧知回顾,新知梳理,试一试,拓展延伸等内容,欢迎下载使用。
初中数学人教版九年级上册24.1.4 圆周角学案设计: 这是一份初中数学人教版九年级上册24.1.4 圆周角学案设计,共6页。学案主要包含了课时安排,新知梳理,精练反馈,学习小结,拓展延伸,新知探究等内容,欢迎下载使用。